【摘要】八年級(jí)數(shù)學(xué)·下新課標(biāo)[北師]第一章三角形的證明學(xué)習(xí)新知問題思考觀察后解答下列問題:(1)你能從圖中發(fā)現(xiàn)一些相等的線段嗎?(2)你能用一句話概括你所得到的結(jié)論嗎?(3)你能結(jié)合圖形分別寫出已知、求證和證明過程嗎?等腰三角形的性質(zhì)例1證明:等腰三角形兩底角的平分線相
2024-11-21 04:25
【摘要】等腰三角形的性質(zhì)倉山鎮(zhèn)中蔣良全復(fù)習(xí)已知:∠A(如右圖)求作:射線AD,使AD平分∠A.基本作圖:平分已知角A實(shí)驗(yàn)研究等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊性質(zhì).DACBACBDACB猜想
2024-11-24 15:54
【摘要】的性質(zhì)?哈五中?初中組?荀輝三角形等腰三角形不等邊三角形等邊三角形底邊和腰不相等的等腰三角形打開知識(shí)的大門?等腰三角形的兩個(gè)底角相等。)底角(頂角已知:?ABC中
2025-11-01 01:47
【摘要】等腰三角形從數(shù)學(xué)的觀點(diǎn)去思考,你觀察到了什么圖形?魁星閣金字塔侗寨吊腳樓等腰三角形一.基本概念:兩條邊相等的三角形叫做等腰三角形.如圖AB=AC,就是等腰三角形ABC?:相等的兩邊叫做腰另一邊叫做底邊兩腰的夾角叫做頂角腰和底邊的夾角
2024-11-24 17:30
【摘要】第13章全等三角形等腰三角形2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS有條邊相等的三角形叫做等腰三角形.自我診斷1.(黔西南中考)已知一個(gè)等腰三角形的兩邊長分別為3和6,則該等腰三角形的周長是.等腰三角形的相等.自我診斷2.(江西中考)如圖1
2025-06-13 14:03
【摘要】 等腰三角形 等腰三角形第1課時(shí) 等腰三角形的性質(zhì)學(xué)前溫故新課早知兩邊 的三角形是等腰三角形. .?,任意兩邊之和 第三邊.?相等 ?180°?大于?學(xué)前溫故新課早知1:等腰三角形的兩個(gè) 相等(
2025-06-21 12:24
【摘要】第十三章遵義學(xué)練考數(shù)學(xué)8上【R】等腰三角形等腰三角形第1課時(shí)等腰三角形的性質(zhì)感謝您使用本課件,歡迎您提出寶貴意見!
【摘要】第十三章軸對(duì)稱遵義學(xué)練考數(shù)學(xué)8上【R】等腰三角形等腰三角形第1課時(shí)等腰三角形的性質(zhì)感謝您使用本課件,歡迎您提出寶貴意見!
【摘要】細(xì)心觀察積極探索在觀察中發(fā)現(xiàn)特點(diǎn)在探索中提高能力讓我們一起走進(jìn)美麗的數(shù)學(xué)世界活動(dòng)(一):細(xì)心觀察活動(dòng)(一):細(xì)心觀察活動(dòng)(一):細(xì)心觀察
2024-11-24 13:18
【摘要】探索·合作·創(chuàng)新三步五環(huán)教學(xué)法張麗紅學(xué)習(xí)目標(biāo)探索·合作·創(chuàng)新三步五環(huán)教學(xué)法、等邊三角形的性質(zhì)和判定進(jìn)行簡(jiǎn)單的計(jì)算、推理證明。,構(gòu)建等腰三角形的知識(shí)體系。,數(shù)形結(jié)合,轉(zhuǎn)化,方程等數(shù)學(xué)思想方法。探索·合作·創(chuàng)新三步五環(huán)教學(xué)法名
【摘要】等腰三角形的判定1、等腰三角形的性質(zhì)?2、等腰三角形的判定方法都有哪些?定義:有兩邊相等的三角形是等腰三角形還有其他方法嗎?導(dǎo)入新課如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測(cè)得∠A=∠B.如果這兩艘救生船以同樣的速度同時(shí)出發(fā),能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?
【摘要】有兩條邊相等的三角形叫等腰三角形.(isoscelestriangle)等腰三角形的有關(guān)概念腰腰底邊底角底角頂角ABC腰底邊頂角底角∠AAB,ACBC∠B,∠C識(shí)別等腰三角形的有關(guān)邊、角條件
2025-10-31 05:34
【摘要】ABC等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊AB和AC叫做腰;另一條邊BC叫做底邊;兩腰所夾的角∠BAC叫做頂角;底邊與腰的夾角∠ABC和∠ACB叫做底角底角底角腰腰底邊
2025-08-16 00:54
2025-08-16 01:46
【摘要】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質(zhì)1、等腰三角形的兩底角相等:∠B=∠C性質(zhì)2、等腰三角形三線合一性質(zhì)3、等腰三角形是軸對(duì)稱圖形,
2025-08-05 10:34