【摘要】勾股定理的逆定理活動1:復(fù)習(xí)與鞏固(1)勾股定理的內(nèi)容是什么?(2)求以線段a,b為直角邊的直角三角形的斜邊c的長:a=3,b=4;a=8,b=6a=5,b=12.①②③活動2:探究:畫出邊長分別是下列各組
2024-11-06 19:33
【摘要】一、復(fù)習(xí)回顧:在平面內(nèi)的一條直線如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。1、垂線定理:在平面內(nèi)的一條直線如果和這個平面的一條斜線垂直,那么它和這條斜線的射影垂直。2、三垂線定理的逆定理:3.練習(xí):已知:在正方體AC1中,求證:(1)BD1⊥A1C1;
2024-11-06 22:04
【摘要】第3課時勾股定理的逆定理直角三角形有哪些性質(zhì)?(1)有一個角是直角;(2)兩個銳角的和為90°(互余);(3)兩直角邊的平方和等于斜邊的平方.反之,一個三角形滿足什么條件才能是直角三角形呢?情景引入首頁(1)有一個角是直角的三角形是直角三角形;(2)有兩個角的和為90°的三角形是
2024-11-19 05:03
【摘要】第2課時勾股定理的逆定理的應(yīng)用滬科版·八年級數(shù)學(xué)下冊狀元成才路狀元成才路新課導(dǎo)入例2已知:在△ABC中,三條邊長分別為a=n2–1,b=2n,c=n2+1(n>1).求證:△ABC為直角三角形.狀元成才路狀元成才路新課探究
2025-03-12 12:44
【摘要】第十七章勾股定理勾股定理的逆定理(第2課時)湖北省咸寧市溫泉中學(xué)廖文濤八年級下冊課件說明應(yīng)用勾股定理及勾股定理的逆定理解決實(shí)際問題.(1)靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.(2)進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.靈活運(yùn)用勾股定理的逆定理解決實(shí)際問題.
2025-08-01 13:26
【摘要】電路定理第三講(總第十四講)特勒根定理互易定理對偶原理特勒根定理(Tellegen’sTheorem)一、具有相同拓?fù)浣Y(jié)構(gòu)的電路NN+–1234+1243-123412345612341
2025-08-05 10:40
【摘要】三角形內(nèi)角和定理學(xué)習(xí)目標(biāo)1、證明“三角形內(nèi)角和定理”,體會證明中輔助線的作用,嘗試用多種方法證明三角形內(nèi)角和定理。2、證明三角形內(nèi)角和定理的兩個推論,知道什么叫推論。三角形藍(lán)和三角形紅見面了,藍(lán)炫耀的說:“我的體積比你大,所以我的內(nèi)角和也比你大!”紅不服氣的說:“那可不好說噢,你自己量量看!
2024-12-29 09:08
【摘要】.勾股定理(2)2問題(1)求出下列直角三角形中未知的邊。CABCBAABCABC30045022158106(2)在長方形ABCD中,寬AB為1m,長BC為2m,求AC長。一個門框的尺寸如圖所示。(1)若有一塊長3米,寬,問怎樣
2025-08-16 01:50
【摘要】18.2勾股定理的逆定理(2)導(dǎo)學(xué)案【學(xué)習(xí)目標(biāo)】:1.利用勾股定理的逆定理解決方位角等實(shí)際應(yīng)用題。2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識重難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題。學(xué)法指導(dǎo):5分鐘閱讀75頁例2,在針對預(yù)習(xí)案二次閱讀75頁例題2,解答預(yù)習(xí)案中的問題,疑惑時記錄在我的疑惑欄內(nèi),準(zhǔn)備
2024-11-21 05:35
【摘要】課題:正弦定理、余弦定理綜合運(yùn)用(二)?課題:正弦定理、余弦定理綜合運(yùn)用(二)知識目標(biāo):1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進(jìn)行邊角互換。能力目標(biāo):1、進(jìn)一步熟悉正、余弦定理;2、
2024-11-09 12:40
【摘要】圓心角、弧、弦、弦心距之間的關(guān)系圓的對稱性圓的軸對稱性(圓是軸對稱圖形)垂徑定理及其推論圓的中心對稱性????(一)、圓的中心對稱性(1)若將圓以圓心為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°,你能發(fā)現(xiàn)什么?圓繞其圓心旋轉(zhuǎn)180°后能與原來圖形相重合。因此,圓是中心對稱圖形,對
2024-11-12 03:30
【摘要】1勾股定理班級姓名學(xué)號知識點(diǎn)復(fù)習(xí)::直角三角形等于。幾何語言表述:如圖,在RtΔABC中,?C=90°。
2024-11-21 05:58
【摘要】勾股定理專題復(fù)習(xí)1.勾股定理內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達(dá)哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進(jìn)一步發(fā)現(xiàn)并證明了直角
2025-04-16 23:55
【摘要】勾股定理的逆定理第1課時人教版初中數(shù)學(xué)八年級下冊第十八章勾股定理情境引入用一根釘上13個等距離結(jié)的細(xì)繩子,讓同學(xué)操作,用釘子釘在第一個結(jié)上,再釘在第4個結(jié)上,再釘在第8個結(jié)上,最后將第十三個結(jié)與第一個結(jié)釘在一起.然后用角尺量出最大角的度數(shù).可以發(fā)現(xiàn)這個三角形是直角三角形.課中探究
2024-11-21 02:26
【摘要】一、教材分析六、教法與學(xué)法五、教學(xué)目標(biāo)九、教學(xué)反思八、板書設(shè)計(jì)七、教學(xué)過程四、教學(xué)媒體三、重點(diǎn)難點(diǎn)分析二、教學(xué)對象分析動量定理一、教材的地位和作用:本章引入沖量和動量這個新概念并結(jié)合牛頓第二定律推導(dǎo)動量定理?!秳恿慷ɡ怼穫?cè)重于力在時間上的累積效果。為解決力學(xué)問題開
2025-05-06 12:10