【摘要】求曲線的軌跡方程2020年12月25日星期五成都市新都香城中學(xué)數(shù)學(xué)組李發(fā)林幾種常見求軌跡方程的方法1.直接法由題設(shè)所給(或通過分析圖形的幾何性質(zhì)而得出)的動點所滿足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡得曲線的方程,這種方法叫直接法.例1:已知一曲線是與兩個定點O(0,0)、A(3,0)距離的比為1/2
2024-11-18 01:22
【摘要】圓錐曲線與方程綜合練習(xí)(2020-1-6)一、選擇題:A(-1,0),B(1,0),點C(x,y)滿足:22(1)142xyx????,則??BCAC()A.6B.4C.2D.不能確定2.拋物線pxy22?與直線04???yax交于
2024-11-11 05:03
【摘要】●教學(xué)目標(biāo)、實虛半軸、焦點、離心率、漸近線方程.●教學(xué)重點雙曲線的幾何性質(zhì)●教學(xué)難點雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準(zhǔn)備幻燈片、三角板●教學(xué)過程:師:上一節(jié),我們學(xué)習(xí)了雙曲
2024-12-08 01:51
【摘要】平面內(nèi)到兩個定點F1、F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫橢圓定點F1、F2叫做橢圓的焦點。說明:注意:ac0F1F2P定義:│PF1│+│PF2│=2a│F1F2│=2c——焦距oyx?1F
【摘要】雙曲線的定義與標(biāo)準(zhǔn)方程(2)線.的點的軌跡叫做雙曲|)FF|數(shù)2a(2a的差的絕對值等于常的距離F,平面內(nèi)與兩個定點F2121?雙曲線定義:一.aPFPF221??二.雙曲線的標(biāo)準(zhǔn)方程:)0,(12222???babyax)0,(12222???bab
2025-07-22 14:06
【摘要】雙曲線及其標(biāo)準(zhǔn)方程練習(xí)題高二一部數(shù)學(xué)組劉蘇文2017年5月2日一、選擇題1.平面內(nèi)到兩定點E、F的距離之差的絕對值等于|EF|的點的軌跡是( )A.雙曲線 B.一條直線C.一條線段 D.兩條射線2.已知方程-=1表示雙曲線,則k的取值范圍是( )A.-10C.k≥0 D.
2025-06-23 15:30
【摘要】1、我們知道和等于常數(shù)2a(2a|F1F2|)的點的軌跡是平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的橢圓1F2F??0,c???0,cXYO??yxM,①如圖(A
2025-08-05 03:58
【摘要】橢圓的標(biāo)準(zhǔn)方程橢圓的定義?平面內(nèi)與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓。?這兩個定點F1、F2叫做橢圓的焦點,兩個焦點間的距離叫做橢圓的焦距。你能根據(jù)橢圓的定義畫一個橢圓嗎?設(shè)橢圓的兩個焦點為F1,F(xiàn)2,它們之間的距離為2c,橢圓上任意一點與F1、F2的距離之
2024-11-18 15:25
【摘要】§雙曲線的簡單幾何性質(zhì)(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.根據(jù)雙曲線的方程研究雙曲線的幾何性質(zhì);2.雙曲線與直線的關(guān)系.【重點】理解雙曲線的方程幾何性質(zhì)和直線的位置關(guān)系【難點】直線和雙曲線的位置關(guān)系一、自主學(xué)習(xí)P5
2024-11-28 00:10
【摘要】曲線與方程(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐。【學(xué)習(xí)目標(biāo)】1.求曲線的方程的方法:待定系數(shù)法,直接法,代入法。2.通過曲線的方程,研究曲線的性質(zhì).【重點】求曲線的方程【難點】通過曲線的方程,研究曲線的性質(zhì)一、自主學(xué)習(xí)P36~P37,找出
2024-11-28 00:11
【摘要】一、回顧1、橢圓的第一定義是什么?2、橢圓的標(biāo)準(zhǔn)方程,焦點坐標(biāo)是什么?定義圖象方程焦點關(guān)系y·oxF1F2··xyoF1F2··x2a2+y2b2=1
2025-08-07 10:53
【摘要】標(biāo)準(zhǔn)方程? 范圍?|x|≤a,|y|≤b對稱性?關(guān)于x軸、y軸成軸對稱;關(guān)于原點成中心對稱頂點坐標(biāo)?(a,0)、(-a,0)、(0,b)、(0,-b)焦點坐標(biāo)?(c,0)、(-c,0)半軸長?長半軸長為a,短半軸長為b.ab離心率?
2025-07-15 02:40
【摘要】第二章圓錐曲線與方程2.2橢圓2.橢圓及其標(biāo)準(zhǔn)方程,標(biāo)準(zhǔn)方程的兩種形式及推導(dǎo)過程.2.會根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程.目標(biāo)了然于胸,讓講臺見證您的高瞻遠(yuǎn)矚新知視界1.橢圓的定義平面內(nèi)與兩個定點F1,F(xiàn)2的距離之和等于常數(shù)(大于|F1
2024-11-21 23:17
【摘要】PF2F1§橢圓及其標(biāo)準(zhǔn)方程(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.從具體情境中抽象出橢圓的模型;2.掌握橢圓的定義;3.掌握橢圓的標(biāo)準(zhǔn)方程.【重點】理解橢圓的定義【難點】掌握橢圓的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)P3
【摘要】§拋物線及其標(biāo)準(zhǔn)方程【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐。【學(xué)習(xí)目標(biāo)】1.掌握拋物線的定義、標(biāo)準(zhǔn)方程、幾何圖形【重點】掌握拋物線的定義、標(biāo)準(zhǔn)方程【難點】掌握拋物線的定義、標(biāo)準(zhǔn)方程、幾何圖形一、自主學(xué)習(xí)函數(shù)2261yxx???