【摘要】楚水實驗學校高一數(shù)學備課組三角函數(shù)的圖象和性質復習x6?yo-?-12?3?4?5?-2?-3?-4?1?x6?yo-?-12?3?4?5?-2?-3?-4?1?1.正弦曲線2.余弦曲線一.三角函數(shù)的圖象知識回顧:xy??
2024-11-22 02:49
【摘要】三角函數(shù)的誘導公式誘導公式(一)sin(360)sincos(360)costan(360)tankkkkZ????????????????其中sin(2)sincos(2)costan(2)tank
2024-11-18 12:17
【摘要】任意角的三角函數(shù)任意角的三角函數(shù)(一)一、填空題1.當α為第二象限角時,|sinα|sinα-cosα|cosα|的值是________.2.角α的終邊經(jīng)過點P(-b,4)且cosα=-35,則b的值為________.3.已知sinθ2tanθ0,則角θ位于第___
2024-12-05 03:25
【摘要】3.2二倍角的三角函數(shù)我們知道,兩角和的正弦、余弦、正切公式與兩角差的正弦、余弦、正切公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?二倍角公式又有何重要作用呢?1.在S(α+β)中,令________,可得到sin2α=________,它簡記為S
2024-12-08 02:41
【摘要】課題:同角三角函數(shù)關系班級:姓名:【學習目標】,并體會它們在三角函數(shù)式的化簡、求值和三角恒等式證明中的應用?!菊n前預習】1、角?的終邊經(jīng)過點(4,3)(0)Paaa??,求?sin和?cos的值。2、你能
2024-12-05 10:17
【摘要】1.同角三角函數(shù)關系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關系.1.同角三角函數(shù)的平方關系是________________,使此式成立
【摘要】高中新課程數(shù)學必修④第二課時問題提出的最小正周期是,且,能否確定函數(shù)f(x)的圖象和性質?()2sin(),(0,)2fxxxR??????????其中?(0)3f?,對于與角有關的實際
【摘要】第一篇:高中數(shù)學-三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsi...
2024-10-11 20:10
【摘要】§、正弦、余弦函數(shù)圖象三角函數(shù)圖象與性質復習:三角函數(shù)線xyoPMT1A的終邊-1-11正弦函數(shù)y=sinx和余弦函數(shù)y=cosx圖象的畫法1、幾何法2、描點法1-10yx●●●一、正弦函數(shù)y=
2024-11-06 18:16
【摘要】1.三角函數(shù)的應用情景:如圖,某大風車的半徑為2m,每12s旋轉一周,它的最低點O離地面m,風車圓周上一點A從最低點O開始,運動t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關系式嗎?你能畫出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
2024-12-08 20:23
【摘要】三角函數(shù)的圖象制作主講:劉曉波高考中涉及到的方面主要是:1.用五點法畫出三角函數(shù)的圖象.2.已知y=Asin(ωx+φ)的圖象,確定函數(shù)的解析式.3.三角函數(shù)的圖形變換.4.三角函數(shù)圖象的對稱性.(掌握圖象的對稱軸及對稱中心)返回結束下一頁例1:作函數(shù)
2024-11-09 00:49
【摘要】【金版學案】2021-2021學年高中數(shù)學第1章三角函數(shù)本章知識整合蘇教版必修4網(wǎng)絡構建三角函數(shù)基本概念的應用若角θ的終邊與函數(shù)y=-2|x|的圖象重合,求θ的各三角函數(shù)值.分析:由于y=-2|x|=?????-2x,x≥0,2x,x<0的圖象
2024-12-05 03:23
【摘要】1.三角函數(shù)的誘導公式設0°≤α≤90°,對于任意一個0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當β∈[0°,90°],180°-α,當β∈[90°,180°],
【摘要】課題:三角函數(shù)的誘導公式(1)班級:姓名:一:學習目標1.通過學生的探究,明了三角函數(shù)的誘導公式的來龍去脈,理解誘導公式的推導過程;2.通過誘導公式的具體運用,熟練正確地運用公式解決一些三角函數(shù)的求值、化簡和證明問題;二:課前預習教學重點:
2024-11-20 01:06
【摘要】二倍角的三角函數(shù)(1)【學習目標】、余弦、正切公式;、化簡、恒等證明。【學習重點難點】[來重點:;。難點:理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù)?!緦W習過程】(一)預習指導:、余弦、正切方式:sin(α+β)=(S???)cos
2024-11-20 01:05