【正文】
differential and axle, bearings and the bridge shell calculation and design verification. Through the above calculation and the drive to meet the various functions of the bridge. In addition the design of a more advanced design tools, such as MATLAB calculated using CAXA software programming and graphics.This design has maintained a drive axle have sufficient strength, stiffness and sufficient life, and enough other properties. And in this designtomon and standardized ponents.Key words:Drive Bridge, the main reducer, differential and axle, Shell Bridge目錄第1章 緒 論 1 驅(qū)動橋簡介 1 驅(qū)動橋設(shè)計的基本要求 1第2章 驅(qū)動橋主減速器設(shè)計 2 主減速器簡介 2 主減速器形式選擇 2 主減速器錐齒輪選擇 3 主減速器齒輪支撐 4 主減速器軸承預(yù)緊 5 錐齒輪嚙合調(diào)整 6 潤滑 6 雙曲面錐齒輪設(shè)計 7 主減速比確定 7 主減速器齒輪計算載荷確定 7 主減速器齒輪基本參數(shù)選擇 8 有關(guān)雙曲面錐齒輪設(shè)計計算方法及公式 11 主減速器雙曲面齒輪強度計算 19 主減速器齒輪材料及處理 21第3章 差速器的設(shè)計 22 差速器的功用 22 差速器結(jié)構(gòu)形式的選擇 22 差速器齒輪的基本參數(shù)選擇 24 差速器強度計算 26 差速器直齒遠錐齒輪參數(shù) 26第4章 車輪傳動裝置的設(shè)計 28 車輪傳動裝置的功用 28 半軸支撐形式 28 全浮式半軸計算載荷的確定 28 半軸強度的計算 28 全浮式半軸桿部直徑的初選 29 半軸的結(jié)構(gòu)設(shè)計及材料與熱處理 29第5章 驅(qū)動橋殼設(shè)計 30 驅(qū)動橋殼的功用和設(shè)計要求 30 驅(qū)動橋殼結(jié)構(gòu)方案分析 30 汽車以最大牽引力行使時的橋殼強度計算 31第6章 軸承的壽命計算 32 主減速器軸承的計算 32 軸承載荷的計算 34 主動齒輪軸承壽命計算 34結(jié) 論 36參考文獻 37致 謝 38附 錄1 39附 錄2 44IV 第1章 緒 論 驅(qū)動橋簡介驅(qū)動橋是汽車傳動系的重要組成部分,一般由主減速器、差速器、車輪傳動裝置和橋殼等組成。 所以中型專用汽車驅(qū)動橋設(shè)計有著重要的實際意義。在本次設(shè)計中完成了對主減速器、差速器、半軸、橋殼及軸承的設(shè)計計算及校核并通過以上計算滿足了驅(qū)動橋的各項功能。為了提高汽車行駛平順性和通過性,有些轎車和越野車全部或部分驅(qū)動輪采用獨立懸架,與此相應(yīng),主減速殼固定在車架上。2) 外廓尺寸小,保證汽車具有足夠的離地間隙,以滿足通過性要求。為了滿足不同的使用要求,主減速器的形式也不同。主動齒輪軸線相對從動齒輪軸線在空間偏移一定距離,這個距離稱為偏移距。錐齒輪有較大的直徑,較高的齒輪強度以及較大的主動齒輪軸和軸承剛度。因而切削刃壽命較長?,F(xiàn)代汽車中主減速器主動錐齒輪支承有兩種形式:懸臂式和跨置式支承。為了盡可能的地增加支承剛度。 (1) (2) 主減速器錐齒輪的支承形式 (1)懸臂式 (2)跨置式為了減小在錐齒輪傳動過程中產(chǎn)生的軸向力所引的齒輪軸的軸向位移,以提高軸的支承剛度,保證錐齒輪的正常嚙合,裝配主減速器時,圓錐滾子軸承應(yīng)有一定的裝配預(yù)緊度。它包括齒面嚙合印跡和齒側(cè)間隙的調(diào)整。 潤滑雙曲面齒輪工作時,齒面間有較大的相對滑動,且齒面間壓力很大,齒面油膜易被破壞,為減少摩擦,提高效率,必須使用含有防刮傷添加劑的雙曲面齒輪油。T=380T=52001. 選擇主、從動齒輪齒數(shù)時應(yīng)考慮以下因素:(1)首先應(yīng)根據(jù)的大小選擇主減速器主、從動齒輪的齒數(shù)、。m =/=300/32= 算出端面模數(shù)后可用下式校核:m=式中:m——齒輪大端端面模數(shù);——模數(shù)系數(shù),取=~,=;——從動齒輪計算轉(zhuǎn)矩。另外,齒面寬過大也會引起裝配空間的減小。螺旋角是沿節(jié)錐齒線變化的,大端的螺旋角較大,小端的螺旋角較小,齒面寬中點處的螺旋角稱為齒輪的中點螺旋角,也是該齒輪的名義螺旋角?!?0176。+90176。+31176。所以對于輕負荷齒輪,一般采用小壓力角,可使齒輪運轉(zhuǎn)平穩(wěn)、噪聲低。(40)cosε(41)tg=[(15)+(31)(40)]/(38)(42)176。齒輪兩側(cè)壓力角的總和。小齒輪面錐角(118)cos(119)tg(120)((102)*(111)+(95))/(103)(121)G=((5)*(113)(120))/(114)小齒輪面錐頂點到大齒輪軸線的距離。小齒輪根錐角(144)cos (145)tg(146)B最小齒側(cè)間隙允許值(147)B最大齒側(cè)間隙允許值(148)(90)+(92)(149)(96)(4)*(148)(150)A=(73)(4) 主減速器齒輪的表面耐磨性,常常用在其輪齒上單位齒長上的圓周力來估算,即=/式中:——作用在齒輪上的圓周力; ——從動齒輪齒面寬。汽車主減速器雙曲面齒輪與差速器的直齒錐齒輪,基本上都用滲碳合金鋼制造,其鋼號主要有:20CrMnTi、22CrMnMo、20MnVB、20CrNiMo、20Mn2TiB等。滲硫后摩擦系數(shù)可顯著降低,故即使?jié)櫥瑮l件較差,也會防止齒輪咬死、膠合和擦傷等現(xiàn)象產(chǎn)生。本設(shè)計中采用的是普通錐齒輪式差速器中的對稱式錐齒輪差速器,由于其結(jié)構(gòu)簡單、工作平穩(wěn)可靠,所以被廣泛采用。這表明:①當任何一側(cè)半軸齒輪的轉(zhuǎn)速為零時,另一側(cè)半軸齒輪的轉(zhuǎn)速為差速器殼轉(zhuǎn)速的兩倍;②當差速器殼體轉(zhuǎn)速為零時,左右半軸將等速反向轉(zhuǎn)動。而快慢半軸的轉(zhuǎn)矩之比/,定義為轉(zhuǎn)矩比,以表示, =/= 1+/1~,轉(zhuǎn)矩比為1~?!?的范圍內(nèi)。30′的壓力角,在某些中型與中型以下貨車上采用20176。(9)節(jié)圓直徑: ==512=60mm==520=100mm(10)節(jié)錐角: =arctan(/)=arctan(12/20)=176。+176。(19)外圓直徑: =+2cos=60+2176。對于非斷開式車橋,車輪傳動裝置的主要零件是半軸。為了使花鍵的內(nèi)徑不致過多地小于半軸的桿部直徑,常常將半軸加工花鍵的端部設(shè)計得粗一些,并且適當?shù)販p小花鍵槽的深度,因此花鍵齒數(shù)必須相應(yīng)增多,一般為10~18齒。這種處理方法能保證半軸表面有適當?shù)挠不瘜?。?qū)動橋殼從結(jié)構(gòu)上可分為整體式橋殼和分段橋殼兩類。拆檢主減速器時,必須把整個驅(qū)動橋從汽車上拆卸下來,目前已很少采用。=(==(=()=()= =N== 軸承載荷分析如上圖所示主動齒輪則主動齒輪軸承的徑向載荷為 則第二級軸承得徑向載荷為當量動載荷計算:Q=XR+YA 式中:X是徑向系數(shù); Y是軸向系數(shù);軸承壽命計算: 式中:C————額定動載荷N; ————溫度系數(shù); ————載荷系數(shù); ————壽命指數(shù)。差速器的設(shè)計方法和思路與主減速器的設(shè)計基本類似,本次設(shè)計選用了工作平穩(wěn)、結(jié)構(gòu)簡單的普通錐齒輪式差速器。他的治學(xué)嚴謹?shù)膽B(tài)度、謙虛扎實的工作作風(fēng)使我深受教育和啟迪,讓我深深感覺到教師的偉大。差速器保證車轉(zhuǎn)彎時外面輪子的旋轉(zhuǎn)比里面輪子快,同時給兩個后車輪提供動力。每個后車輪上各有一個車軸,兩個車輪的內(nèi)側(cè)邊緣都有兩個齒輪夾板。環(huán)行齒輪和差速裝置相連,從而使這個裝置在副齒輪旋轉(zhuǎn)時和環(huán)行齒輪一起旋轉(zhuǎn)。在這次設(shè)計即將完成之際,我要忠心的謝謝你們!同時也感謝這四年來幫助過我的老師和同學(xué)!附 錄1Differential and Rear AxlesThe differential is part of the rearaxlehousing assembly, which includes the differential, rear axles, wheels, and bearings. If the car were to be driven in a straight line without having to make turns, then no differential would be necessary. However, when the car rounds a turn, the outer wheel must travel farther than the inner wheel. The differential permits the two rear wheels to rotate different amounts when the car goes around a turn, while still delivering power to both rear wheels.The rear axles are attached to the wheels and have bevel side gears on their inner ends. The differential case is assembled on the left axle but can rotate on a bearing independently of the differential case supports the differentialpinion gear on a shaft, and this gear meshes with the two bevel gears. The ring gear is attached to the differential case so that the case rotates with the ring gear when the later is driven by the drive driving power enters the differential through the drive pinion on the end of the propeller shaft. The drive pinion is meshed with a large ring gear so that the ring gear revolves with the pinion.Attached to the ring gear (through the differential case) is a differentialpinion shaft on which are assembled two differentialpinion gears. Each rear car wheel has a separate axle, and there are two side gears splined to the inner ends of the two wheel axles. The two differentialpinion gears mesh with these two side gears. When the car is on a straight road, the two differentialpinion gears do not rotate on the pinion shaft, but they do exert pressure on the two side gears so that the side gears turn at the same speed as the ring gear, causing both rear wheels to turn at the same speed, differential case is supported in the carrier by two taperedroller side bearings. This assembly can be adjusted from side to side to provide the proper backlash between the ring gear and pinion and the required side bearing preload. This adjustment is achieved by threaded beari