【正文】
., Liew K. M., Kitipornchai S. Secondorder statistics of the elastic buckling of functionally graded rectangular plates. Composites Science and Technology, 2005, 65(78): 11651175[26]Cheng Z. Q., Kitipornchai S. Membrane analogy of buckling and vibration of inhomogeneous plates. Journal of Engineering Mechanics, ASCE, 1999, 125 (11): 12931297[27]Reddy J. N., Cheng Z. Q. Frequency correspondence between membranes and functionally graded spherical shallow shells of polygonal platform. International Journal of Mechanical Sciences, 2002, 44 (5): 967985[28]Najafizadeh M. M., Heydari H. R. Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory. European Journal of Mechanics ASolids, 2004, 23 (6): 10851100[29]Najafizadeh M. M., Heydari H. R. An exact solution for buckling of functionally graded circular plates based on higher order shear deformation plate theory under uniform radial pression. International Journal of Mechanical Sciences, 2008, 50(3): 603612[30]Shen HuiShen. Postbuckling of FGM plates with piezoelectric actuators under thermoelectromechanical loadings. International Journal of Solids and Structures, 2005, 42(23): 61016121[31]Shen HuiShen. Thermal postbuckling behavior of shear deformable FGM plate with temperaturedependent properties. International Journal of Mechanical Sciences, 2007, 49(4): 466478[32]Shen HuiShen. Nonlinear thermal bending response of FGM plates due to heat conduction. Composites Part B: Engineering, 2007, 38(2): 201215[33]Shen HuiShen, Li ShiRong. Postbuckling of sandwish plates with FGM face sheets and temperaturedependent properties. Composites Part B: Engineering, 2007, 39(2): 332344[34]Woo J., Meguid S. A. Nonlinear analysis of functionally graded plates and shallow shells. International Journal of Solids and Structures, 2001, 38 (4243): 74097421[35]Woo J., Meguid S. A. Thermomechanical postbuckling analysis of moderately thick functionally graded plates and shallow shells. International Journal of Mechanical Sciences, 2005, 47(8): 11471171[36]Yang J., Kitipornchai S., Liew K. M. Large amplitude vibration of thermoelectromechanically stressed FGM laminated plates. Computer Methods in Applied Mechanics and Engineering, 2003, 192(3536): 38613885[37]Qian L. F., Batra R. C., Chen L. M. Static and dynamic deformations of thick functionally graded elastic plates by using higherorder shear and normal deformable plate theory and meshless local PetrovGalerkin method. Composites Part B: Engineering, 2004, 35(68): 685697[38]Loy C. T., Lam K. Y, Reddy J. N. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences , 1999, 41 (3): 309324[39]Ng T. Y., Lam K. Y., Liew K. M., et al. Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading. International Journal of Solids and Structures , 2001, 38 (8): 12951309[40]Wu X. H., Chen C. Q., Shen Y. P., et al. A high order theory for functionally graded piezoelectric shells. International Journal of Solids and Structures, 2002, 39 (20): 53255344[41]Shen H. S. Thermal postbuckling behavior of functionally graded cylindrical shells with temperaturedependent properties. International Journal of Solids and Structures, 2004, 41 (7): 19611974[42]Sofiyev A. H. Dynamic buckling of functionally graded cylindrical thin shells under nonperiodic impulsive loading. ACTA Mechanica, 2003, 165 (34): 151163[43]Shen H. S. Postbuckling analysis of axially, loaded functionally graded cylindrical panels in thermal environments. International Journal of Solids and Structures, 2002, 39 (24): 59916010[44]Yang J., Kitipornchai S., Liew K. M. Nonlinear analysis of the thermoelectro mechanical behaviour of shear deformable FGM plates with piezoelectric actuators. International Journal for Numerical Methods in Engineering, 2004, 59 (12): 16051632[45]Chen W. Q., Bian Z. G., Lv C. F., Ding H. J. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with pressible fluid. International Journal of Solids and Structures, 2004, 41(34): 947–964[46]Sankar . An elasticity solution for functionally graded beams. Composites Science and Technology, 2001, 61(5): 689696[47]Sankar, ., Taeng J. T. Thermal stresses in functionally graded beams. AIAA Journal, 2002, 40(6): 12281232[48]Venkataraman S., Sankar B. V. Analysis of Sandwich Beams with Functionally Graded Core, AIAA, 2001, 1: 752759[49]Venkataraman S., Sankar B. V. Elasticity solution for stresses in a sandwich beam with functionally graded core 作者簽名: 日期: 畢業(yè)論文(設(shè)計(jì))授權(quán)使用說明本論文(設(shè)計(jì))作者完全了解**學(xué)院有關(guān)保留、使用畢業(yè)論文(設(shè)計(jì))的規(guī)定,學(xué)校有權(quán)保留論文(設(shè)計(jì))并向相關(guān)部門送交論文(設(shè)計(jì))的電子版和紙質(zhì)版。圖表整潔,布局合理,文字注釋必須使用工程字書寫,不準(zhǔn)用徒手畫3)畢業(yè)論文須用A4單面打印,論文50頁以上的雙面打印4)圖表應(yīng)繪制于無格子的頁面上5)軟件工程類課題應(yīng)有程序清單,并提供電子文檔1)設(shè)計(jì)(論文)2)附件:按照任務(wù)書、開題報(bào)告、外文譯文、譯文原文(復(fù)印件)次序裝訂3)其它 第35頁 共35頁。學(xué)??梢怨颊撐模ㄔO(shè)計(jì))的全部或部分內(nèi)容。 Journal of Applied Mechanics, ASME, 2004, 71(3): 421424[51]Shi Z. F. General solution of a density functionally gradient piezoelectric cantilever and its applications. Smart Material and Structures, 2002, 11(1): 122129[52]Shi Z. F., Chen Y. Functionally graded piezoelectric cantilever beam under load. Archive of Applied Mechanics, 2004, 74(34): 237–247附 錄由邊界條件(10),(11)及(9)的第一式,求得A=Pbk1H1h2H1(