freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

外文翻譯--圖像分割-文庫吧在線文庫

2025-12-18 08:06上一頁面

下一頁面
  

【正文】 entered if |R| ≥ T () where T is a nonnegative threshold and R is given by Eq. (). Basically,this formulation measures the weighted differences between the center point and its neighbors. The idea is that an isolated point (a point whose gray level is significantly different from its background and which is located in a homogeneous or nearly homogeneous area) will be quite different from its surroundings, and thus be easily detectable by this type of mask. Note that the mask in Fig. (a) is the same as the mask shown in Fig. (d) in connection with Laplacian operations. However, the emphasis here is strictly on the detection of points. That is, the only differences that are considered of interest are those large enough (as determined by T, to be considered isolated points. Note that the mask coefficients sum to zero, indicating that the mask response will be zero in areas of constant gray level. 4 1 1 1 1 8 1 1 1 1 ( a) ( b) ( c) ( d) FIGURE (a) Pointdetection mask. (b) Xray image of a turbine blade with a porosity. (c) Result of point detection. (d) Result of using Eq. ().(Original image courtesy of XTEK Systems Ltd.) EXAMPLE :Detection of isolated points in an image. We illustrate segmentation of isolated points from an image with the aid of Fig. (6), which shows an Xray image of a jetengine turbine blade with a porosity in the upper, right quadrant of the image. There is a single black pixel embedded within the porosity. Figure (c) is the result of applying the point detector mask to the Xray image, and Fig. (d) shows the result of using Eq. () with T equal to 90% of the highest absolute pixel value of the image in Fig. (c). (Threshold selection is discussed in detail in Section ) The single pixel is clearly visible in this image (the pixel was enlarged manually so that it would be visible after printing). This type of detection process is rather specialized because it is based on singlepixel discontinuities that have a homogeneous background in the area of the detector mask. When this condition is not satisfied, other methods discussed in this chapter are more suitable for detecting graylevel discontinuities. 5 Line Detection The next level of plexity is line detection. Consider the masks shown in Fig. . If the first mask were moved around an image, it would respond more strongly to lines (one pixel thick) oriented horizontally. With a constant background, the maximum response would result when the line passed through the middle row of the mask. This is easily verified by sketching a simple array of 139。 direction ( a) ( b) ( c) FIGURE Illustration of line detection (a) Binary wirebond mask. (b) Absolute value of result after processing with 45176。 ( 6)現(xiàn)場條件:已實(shí)現(xiàn)三通一平 . ( 7)工程量清單 ( 8)施工圖(另附) 設(shè) 計(jì) 工 作 內(nèi) 容 撰寫招標(biāo)文件 ,編制工程量清單 以施工圖紙為依據(jù),根據(jù)國家標(biāo)準(zhǔn)《建設(shè)工程工程量清單計(jì)價(jià)規(guī)范》、及山東省現(xiàn)行消耗量定額進(jìn)行編制。同時(shí)了解畢業(yè)設(shè)計(jì)的進(jìn)度安排和答辯時(shí)間。其次要準(zhǔn)備回答答辯教師與設(shè)計(jì)內(nèi)容相關(guān)的問題。 。 設(shè)計(jì)進(jìn)程安排 第一階段 完成清單工程和定額消耗量工程,整理好工程量草稿 第二階段 應(yīng)該是用廣聯(lián)達(dá)編制工程量清單、招標(biāo)控制價(jià)及投標(biāo)報(bào)價(jià) 第三階段 答辯 14 主要 參考 資料 及文獻(xiàn) ( GB/T 503262020) 。 4)匯總裝訂,形成畢業(yè)設(shè)計(jì)文件。 投標(biāo)報(bào)價(jià)說明; 投標(biāo)報(bào)價(jià)匯總表;主要材料清單報(bào)價(jià)表 ;分部分項(xiàng)工程量清單報(bào)價(jià)表;措施項(xiàng)目報(bào)價(jià)表;其他項(xiàng)目報(bào)價(jià)表; 規(guī)費(fèi)與稅金 工程量清單項(xiàng)目 報(bào)價(jià) 表。 7)本工程設(shè)計(jì)使用年限: 3類(合理使用 50 年) 8)屋面防水等級(jí):二級(jí) 工程特點(diǎn) 本工程為重點(diǎn)工程, 業(yè)主要求盡量采用施工新技術(shù)并要求必須按合同工期完工。 and the fourth mask to lines in the 450 direction . These directions can be established also by noting that the preferred direction of each mask is weighted with a larger coefficient (., 2) than other possible directions. Note that the coefficients in each mask sum to zero, indicating a zero response from the masks in areas of constant gray level. Horizontal +45176。而且,這一點(diǎn)從我們使用局部檢測進(jìn)行處理就可以很明顯地看出 (因此, 節(jié)中對(duì)于邊緣的局部性質(zhì)進(jìn)行了說明 )。 ( a) ( b) 圖 105 ( a)理想的數(shù)字邊緣模型,( b)斜坡數(shù)字邊緣模型。這使我們明白 :模糊的邊緣使其變粗而清晰的邊緣使其變得較細(xì)。依據(jù)這個(gè)模型生成的完美邊緣是一組相連的像素的集合 (此處為在垂直方向上 ),每個(gè)像素都處在灰度級(jí)躍變的一個(gè)垂直的臺(tái)階上 (如圖形中所示的水平剖面圖 )。直觀上,一條邊緣是一組相連的像素集合。這些孤立點(diǎn)也可以使用圖102(a)中的模板進(jìn)行檢測,然后刪除,或者使用下一章中討論的形態(tài)學(xué)腐蝕法刪除。線檢測器 處理后得到的絕對(duì)值,( c)對(duì)圖像( b)設(shè)置門限得到的結(jié)果 為了決定哪一條線擬合模板最好,只需要簡單地對(duì)圖像設(shè)置門限。的線條。 換句話說,我們可能對(duì)檢測特定方向上的線感興趣。這些方向也可以通過注釋每個(gè)模板的優(yōu)選方向來設(shè)置,即在這些方向上用比別的方向更大的系數(shù) (為 2)設(shè)置權(quán)值。如果第 l個(gè)模板在圖像中移動(dòng),這個(gè)模板將對(duì)水平方向的線條 (一個(gè)像素寬度 )有更強(qiáng)的響 4 應(yīng)。嚴(yán)格地講,這里強(qiáng)調(diào)的是點(diǎn)的檢測。照例,模板響應(yīng)是它的中心位置。關(guān)于門限處理的討論將在幾種面向區(qū)域的分割方法展開的討論之后進(jìn)行。第一類性質(zhì)的應(yīng)用途徑是基于亮度的不連續(xù)變化分割圖像,比如圖像的邊緣。精確的分割決定著計(jì)算分析過程的成敗。從輸人輸出均為圖像的處理方法轉(zhuǎn)變?yōu)檩斎藶閳D像而輸出為從這些圖像中提取出來的屬性的處理方法〔這方面在 節(jié)中定義過 )。例如,在電子元件的自動(dòng)檢測方面,我們關(guān)注的是分析產(chǎn)品的圖像,檢測是否存在特定的異常狀態(tài),比如,缺失的元件或斷裂的連接線路。所以,通常的方法是將注意力集中于傳感器類型的選擇上,這樣可以增強(qiáng)獲取所關(guān)注對(duì)象的能力,從而減少圖像無關(guān)細(xì)節(jié)的影響。除了邊緣檢測本身,我們還會(huì)討論一些連接邊緣線段和把邊緣“組裝 ”為邊界的方法。尋找 間斷最一般的方法是以 一個(gè)模板進(jìn)行檢測。基本上,這個(gè)公式是測量中心點(diǎn)和它的相鄰點(diǎn)之間加權(quán)的差值。圖 102(c)是將點(diǎn)檢測模板應(yīng)用于 X射線圖像后得到的結(jié)果 .圖 102(d)顯示了當(dāng) T取圖 102(c)中像素最高絕襯值的 90%時(shí),應(yīng)用式 ()所得的結(jié)果 (門限選擇將在 節(jié)中詳細(xì)討論 )。第 3個(gè)模板對(duì)于垂直線有最佳響應(yīng) 。從左到右代表圖 103中模板的響應(yīng),這里 R 的值由式()給出。下列例子說明了這一過程。方向的部分產(chǎn)生了最強(qiáng)響應(yīng)。的線段 (圖像中在左上象限中也有此方向上的圖像部分,但寬度不是一個(gè)像素 )。某些前面介紹的概念在這里為了敘述的連續(xù)性將進(jìn)行簡要的重述。 我們先從直觀上對(duì)邊緣建模開始。相反,現(xiàn)在邊緣的點(diǎn)是包含于斜坡中的任意點(diǎn),并且邊緣成為一組彼
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1