【摘要】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【摘要】不等式與不等式組單元測試一班級:姓名:一、填空題(共10小題,每題3分,共30分)的解集是x的范圍用不等式表示出來______________3.?1≤2的非正整數(shù)解為
2024-11-15 15:59
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【摘要】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2024-10-29 03:11
【摘要】024-2第15題不等式與不等式組單元測試二一、填空題(共14小題,每題2分,共28分)班級:姓名:1.不等式7-x1的正整數(shù)解為:.2.當(dāng)y_______時,代數(shù)式423y?的值至少為1.3.當(dāng)x______
2024-11-28 13:29
【摘要】:1.a是正數(shù)2.a是負(fù)數(shù);3.a與5的和小于7;4.a與2的差大于-1;5.a的4倍大于8;6.a的一半小于3.a0a-14a8a÷26的解?哪些不是
2025-06-12 00:55
【摘要】第1課時一次方程(組)及其應(yīng)用第2課時一元二次方程及其應(yīng)用第3課時分式方程及其應(yīng)用第4課時一元一次不等式(組)及其應(yīng)用第二單元方程(組)與不等式(組)第二單元方程(組)與不等式(組)第1課時一次方程(組)及其應(yīng)用中考考點清單考點1一元一次
2024-11-24 15:38
【摘要】 不等式的性質(zhì)質(zhì)不等式的性質(zhì)1 不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向 .?即:如果ab,那么a±c b±c.?不等式的性質(zhì)2 不等式兩邊乘(或除以)同一個 數(shù),不等號的方向不變.?即:如果ab,c0,那么a
【摘要】
2025-06-12 03:57
【摘要】第二章方程與不等式第2講不等式與不等式組1.不等式3x-6≥0的解集為()A.x>2B.x≥2C.x<2D.x≤22.(2021年湖南長沙)一個不等式組的解集在數(shù)軸上表示出來如圖X2-2-1,則下列符合條件的不等式組為()圖X2-2-1
2024-12-03 11:52
【摘要】河南省泌陽縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質(zhì)化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時,axgxfaaxgxfaa時,axgxfxgxfxgxf
2025-05-09 00:31
【摘要】第二單元方程(組)與不等式(組)第8課時不等式(組)的解法及不等式的應(yīng)用考點聚焦考點一不等式的有關(guān)概念及性質(zhì)不等關(guān)系同一個數(shù)(或式子)不變同一個正數(shù)不變考點聚焦考點一不等式的有關(guān)概念及性質(zhì)負(fù)數(shù)改變溫馨提示,不等式的解是單獨的未知數(shù)的值,
2025-06-12 13:59
2025-08-15 22:11
【摘要】高二數(shù)學(xué)競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點:1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域為,對于區(qū)間內(nèi)任意兩點,都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個點重合時“邊形”的重心在圖
2025-08-04 18:32
【摘要】第一篇:57均值不等式與不等式的實際應(yīng)用 學(xué)案五十七:均值不等式與不等式的實際應(yīng)用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(?。┲?..
2024-11-03 14:01