【正文】
del to see whether we could increase the performance to levels that we do not experience in practice (yet). We used TBA‘s own proven container terminal simulation suite TimeSquare to quantify the effects of each adjustment individually. In this article we describe this stepwise improvement approach from an imaginary existing terminal with Dual RMGs and AGVs, as would have been constructed in the 1990s. For each step towards a stateoftheart terminal with TwinRMGs and LiftAGVs we show the effect on productivity of the various involved equipment types. Starting scenario: a Year 2020 automated terminal Our starting terminal is a fictitious terminal with 16 double trolley quay cranes (backreach interchange, with platform between the legs) on a 1,500m quay. The yard consists of 35 stack modules with dual crossover (or nested) RMGs. Crossover RMGs are stacking cranes that can pass each other (one is smaller and can pass the larger one underneath). Because of the passing ability, both RMGs are able to serve both the waterside and the landside transfer area in the perpendicular stack layout. Waterside transport is done by lifton liftoff (LOLO) Automated Guided Vehicles (AGVs), which are pooled over all quay cranes. All modeled equipment has technical specifications as is appropriate for 10yearold equipment. The terminal is suitable for a yearly throughput of million TEU (TEU factor )。 trucks picking up a container at the yard wait an additional two minutes (Figure 5). Figure 6 shows the status distribution of the RMGs, divided in RMGs processing the waterside (WS RMG) and RMGs processing the landside (LS RMG). Although they are dedicated to do productive moves of their corresponding side, they can do unproductive moves for either side. This is why the WS RMGs show a large increase in ?shuffle move‘ status when they execute shuffles for the gate moves. This takes the stress off landside RMGs that need to handle more trucks. In future steps we will see whether the waterside volume can be increased as well. Step 3: replacing AGVs by LiftAGVs LOLO AGVs require a ?handshake‘ interchange with RMGs at the yard. This causes waiting times for both RMGs and AGVs,because for almost every move one of them has to wait for the other to arrive. This handshake can be excluded from the process by using LiftAGVs instead of AGVs. LiftAGVs are able to place and take containers from a platform located in front of the stack modules by using a lift mechanism. RMGs place and take containers from the platform as well. In this step we use LiftAGVs with – besides the lifting ability –the same specs as the 10yearold AGVs. Changes and expected effects: Unlinked interchange between LiftAGV and RMG reduces waiting time for both equipments. This should increase overall terminal productivity. LiftAGVs need to make an additional stop in front of the container rack to lower or hoist their platform. This is an extra move in their routing process and costs additional time (15 – 25seconds per stack visit). This decreases productivity. The container racks require more space than interchange positions for AGVs. Therefore only four racks fit in each stack module interchange zone instead of five parking slots for reduces flexibility and has a negative effect on performance. Results The quay crane performance increases with 3 to bx/hr for any number of vehicles per crane. The reduced waiting times largely outweigh the longer drive times and fewer transfer points,as shown in Figure 7. Figure 8 shows the move duration per box of the AGVs and liftAGVs. In the left column for AGVs you can see a large portion of the time is consumed by ?Interchanging at RMG TP‘, minutes per box, which represents the waiting time for the handshake with an RMG. The right column for LiftAGVs shows a slight increase in dr iving times (because dr iving requires an additional action: lifting in front of rack), but also a huge reduction in ?Interchanging at RMG TP‘: only minutes (20 seconds).LiftAGVs are approaching quay cranes generally a bit earlier now, which causes ?Waiting for QC approach‘ to increase。 為了 實(shí)現(xiàn)它 ,我們 以一個(gè)已有的完全 自動(dòng)化 的系統(tǒng)設(shè)備為基礎(chǔ) , 再增 加 最 新的 技術(shù) 改進(jìn) ,對(duì)于 沒有實(shí)踐經(jīng)驗(yàn) 的我們,我們不知道 該模型 能 否 增加性能等級(jí)。 所有建模設(shè)備 都有相應(yīng)的 技術(shù)規(guī)格 ,其 使用年限為 10 年。 第一步 改進(jìn) 1:用 軌道式集裝箱龍門吊代替 輪胎 式集裝箱龍門吊 第一步 是用 軌道式集裝箱龍門吊 代替 輪胎 式集裝箱龍門吊 ,還 包含了幾個(gè) 相關(guān)調(diào)整。這意味著將 能夠 布置更多的 碼頭起重機(jī) :82 臺(tái) 而不是 70 臺(tái) 。 對(duì)于軌道式起重機(jī) , 在 每個(gè)堆疊模塊中配有 兩 臺(tái) 能在水上工作 的軌道式起重機(jī) ,但它們的 運(yùn)行 速度 有限 , 為了達(dá)到讓人滿意的結(jié)果, 實(shí)際 上都 需要在水上 工作 。這意味著,年吞吐 能力可以 達(dá)到320 萬 標(biāo)箱 。 如圖 4 所示。 在后面的步驟 中 , 我們將看到水上的 貨運(yùn)量 是否也 會(huì) 增加。 可升降的自動(dòng)導(dǎo)向車 需要 在 集裝箱的 提升 或者卸方貨物的 平臺(tái) 前 作出額外的停頓 。 如圖 7所示。 現(xiàn)在 我們 根據(jù)最新的 規(guī)范 增加了 導(dǎo)向車的 運(yùn)行 速度 。 步驟 5A:更多的運(yùn)行機(jī)會(huì) 在 原始 情況下, 港區(qū)是不能處理更多的移動(dòng)的,為了讓它 有益于 處理超過 10%的集裝箱 , 碼頭起重機(jī) 需要有雙升的升降機(jī)。 要給軌道式起重機(jī) 更快地 供 應(yīng)更多的 集裝箱。 步驟 5B: 高效的 碼頭起重機(jī) 在 ( 1990 2020 年)雙小車岸邊起重機(jī)的原始 布局 方案 一直 沿用至今 , 發(fā)展相對(duì) 較緩 。 ?可升降的自動(dòng)導(dǎo)向車與碼頭起重機(jī)處理一個(gè)標(biāo)箱的等待和裝車時(shí)間從 220秒降低到了 100秒。碼頭的吞吐量和相應(yīng)的通過量 引起港區(qū)額外的轉(zhuǎn)運(yùn)。 兩臺(tái)軌道式起重機(jī)就沒那個(gè)必要,因?yàn)樗鼈兛梢钥焖俚膫魉湍切┒褩5募b箱到適合的箱位。因?yàn)樾阅苁歉叨纫揽啃录夹g(shù)的。薩能 博士是以為在 TBA公司的 首席顧問,掌管 TBA公司此行的項(xiàng)目。 咨詢: 荷蘭 TBA公司 、 Karrepad 2613年美聯(lián)社代爾夫特、荷蘭 電話 :+ 31(0)15 380 5775 電子郵件 : 網(wǎng)址 : ?,F(xiàn)在負(fù)責(zé)監(jiān)督 所有 此行的項(xiàng)目 ,任積極參與終端的設(shè)計(jì)和優(yōu)化。這 為將來實(shí)現(xiàn)完全自動(dòng)化終端的繁榮前景提供 了一個(gè)堅(jiān)實(shí)的基礎(chǔ) 。在低于 10%的空閑時(shí)間里,港區(qū)處理當(dāng)?shù)馗叻迤诘呢涍\(yùn)量在的靈活性太小。 港區(qū) 的需求增加時(shí), 軌道式起重 機(jī)在每個(gè)堆疊模塊中 移動(dòng) 的狀態(tài) 在圖表中已經(jīng) 顯示 了出來 。我們將可以看到它對(duì)性能水平的整體影響。 要達(dá)到 現(xiàn)代 63 秒的 起重周期應(yīng)該是 有 可能的。