【摘要】函數(shù)的概念班級:__________姓名:__________設計人__________日期__________課后練習【基礎過關】1.下列函數(shù)中,值域為(0,+∞)的是()====x2+12.下列式子中不能表示函數(shù)的是A.B.C.D.3.函數(shù)y=+的定義域是()A.
2024-12-09 07:18
【摘要】一、教學目標:1.知識與技能:(1)理解函數(shù)的奇偶性及其幾何意義,培養(yǎng)學生觀察、抽象的能力,以及從特殊到一般的概括、歸納問題的能力.(2)學會運用函數(shù)圖象理解和研究函數(shù)的性質,掌握判斷函數(shù)的奇偶性的方法,滲透數(shù)形結合的數(shù)學思想.2.過程與方法:從已有知識出發(fā),通過學生的觀察、歸納、抽象和推理論證培養(yǎng)學生的數(shù)學能力,進一步領會數(shù)形結合和分類的思想方法。:
2025-05-09 22:00
【摘要】函數(shù)的奇偶性課時目標,了解函數(shù)奇偶性的含義;;.1.函數(shù)奇偶性的概念一般地,設函數(shù)y=f(x)的定義域為A.(1)如果對于任意的x∈A,都有__________,那么稱函數(shù)y=f(x)是偶函數(shù);(2)如果對于任意的x∈A,都有__________,那么稱函數(shù)y=f(x)是奇函數(shù).2.奇、偶函
2024-11-28 01:09
【摘要】難點8關于奇偶性與單調性(二)函數(shù)的單調性、奇偶性是高考的重點和熱點內(nèi)容之一,,掌握基本方法,形成應用意識.●難點磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.●案例探究[例1]已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)0,設不等式解
2025-04-04 05:16
【摘要】第一課時正弦定理(1)一.學習目標:1.了解正弦定理推導過程;2.掌握正弦定理內(nèi)容;3.會利用正弦定理求解簡單斜三角形邊角問題。二.學習重難點:重點:正弦定理證明及應用;難點:正弦定理的證明,正弦定理在解三角形時應用思路.三.自主預習:1.一般地,把三角形的三個內(nèi)角A,B,C和它們的對邊叫做三角形的________,已知三角形的幾個元素求
2025-06-08 00:37
【摘要】第二章第1課時函數(shù)的奇偶性的定義一、選擇題1.設函數(shù)f(x)是定義在R上的奇函數(shù),且f(-3)=-2,則f(3)+f(0)=()A.3B.-3C.2D.7[答案]C[解析]∵函數(shù)f(x)是定義在R上的奇函數(shù),∴f(0)=0,又f(-3)=-f(3)=
2024-11-28 01:20
【摘要】任意角考查知識點及角度難易度及題號基礎中檔稍難任意角的概念及推廣39象限角的判定1、2、4終邊相同的角及應用57、10區(qū)間角的表示6、11確定角所在的象限8121.下列各角中,與60°角終邊相同的角是()A.-300°
2024-12-05 06:49
【摘要】課題:函數(shù)的奇偶性與單調性的綜合學習目標展示1.理解奇偶函數(shù)的單調性的性質;2.會解決有關抽象函數(shù)的單調性與奇偶性的問題.銜接性知識1.如何用定義判斷函數(shù)的奇偶性?答:按“求定義域?化簡解析式?計算()fx??結論”來判斷?基礎知識工具箱要點性質奇函數(shù)的性質①
2024-11-19 12:06
【摘要】集合的基本運算班級:__________姓名:__________設計人__________日期__________課后作業(yè)【基礎過關】1.若,,,,則滿足上述條件的集合的個數(shù)為2.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6},那么集合{2,7,8}是∪
【摘要】平面一、選擇題1.用符號表示“點A在直線l上,l在平面α外”,正確的是()A.A∈l,l?αB.A∈l,l?αC.A?l,l?αD.A?l,l?α解析:選B注意點與直線、點與平面之間的關系是元素與集合間的關系,直線與平面之間的關系是集合與集合間的關系.2.下
2024-12-09 03:44
【摘要】函數(shù)的基本性質——奇偶性云陽中學高一備課組1.在初中學習的軸對稱圖形和中心對稱圖形的定義是什么?復習回顧2.請分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象.1.在初中學習的軸對稱圖形和中心對稱圖形的定義是什么?復習回顧1.奇函數(shù)、偶函數(shù)的定義講授新課
2024-12-28 01:48
【摘要】對數(shù)函數(shù)及其性質班級:__________姓名:__________設計人__________日期__________課后練習【基礎過關】1.若,則下列結論正確的是A.B.C.D.2.已知函數(shù)在上的最大值與最小值之和為,則的值為A.B.3.已知,則的最小值為4.
2024-12-08 01:57
【摘要】指數(shù)函數(shù)及其性質班級:__________姓名:__________設計人__________日期__________課后練習【基礎過關】1.在同一坐標系內(nèi),函數(shù)的圖象關于B.軸對稱C.軸對稱對稱2.已知的圖象經(jīng)過點,則的值域是A.B.C.D.3.已知函數(shù)為定義在R上的奇函
2024-12-09 07:17
【摘要】集合的含義與表示課后作業(yè)·練習案【基礎過關】1.若集合中只含一個元素1,則下列格式正確的是=2.集合的另一種表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}3.下列說法正確的有①集合,用列舉法表示為{1,0,l};
【摘要】函數(shù)的奇偶性y=x2-xx當x1=1,x2=--1時,f(-1)=f(1)當x1=2,x2=--2時,f(-2)=f(2)對任意x,f(-x)=f(x)xy1?偶函數(shù)定義:如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x)。那么f(x)就叫偶函數(shù)。奇函數(shù)定義:如果對于
2024-11-18 13:34