【正文】
length, and use of deflection equations derived from linear elastic analysis. The effective moment of inertia, Ie, is based on semiempirical considerations, and despite some doubt about its applicability to conventional reinforced concrete members subjected to plex loading and boundary conditions, it has yielded satisfactory results in most practical applications over the years. In North American codes, deflection calculation of flexural members are mainly based on equations derived from linear elastic analysis, using the effective moment of inertia, Ie, given by Branson’s formula (1965) gcracracre IIMMIMMI ???????????????????? ]1[ 3g3 ( 1) crM =cracking moment。 α=bond dependent coefficient ( until more data bee available, α=) 。計算撓度的九種方法 ,包括被測試人員用于下一期擬議的 ACI R03 和 CSA S80602和 ISIS M0301 中的新公式設(shè)計指南中的實驗197個梁和板的撓度進行測試的方法。適用性 。 本文的目的是指出現(xiàn)有的撓度公式和論證所有的通用方程在計算 FRPRC 構(gòu)件有局限性??梢酝ㄟ^綜合實驗修改方程的常量。 FRPE =FRP的彈性模量 。 根據(jù) ACI ( ACI 2021)中的方程可得,在工作荷載作用下, FRP構(gòu)件的撓度通常是可預(yù)測的 ,經(jīng)過幾次嘗試對方程修改從而得到方程式( 7)。而法薩和 GangaRao ( 1992)對梁的撓度實驗的預(yù)測十分準確。因此通過慣性矩加載點和方程( 1)中的有效慣性矩可導(dǎo)出撓度方程。α =相關(guān)系數(shù) 。他 們發(fā)現(xiàn)方程的順序取決于 FRP 的彈性模量和配筋率。 gI =毛截 面慣性矩 , crI =破壞截面混凝土慣性矩 。由于變形量和梁的抗彎剛度是成反比的 ,甚至一些纖維復(fù)合材料超鋼筋加固梁在使用情況下容易受到不可接受的水平偏轉(zhuǎn)。撓度彎曲 。達格瑪 .斯維克瓦 3 土木工程學(xué)院研究員 土木工程學(xué)院研究員 土木工程學(xué)院副教授(通訊作者) 摘 要: 纖維復(fù)合材料包覆鋼筋混凝土( FRPRC)的設(shè)計通常是由正常使用極限狀態(tài)的要求控制 ,而不是像由傳統(tǒng)的鋼筋混凝土極限狀態(tài)要求控制。 FRPE =modulus of elasticity of FRP reinforcement。 Codes。 Sandee Alminar2。 gI =moment of inertia of the gross section。 and FE =modulus of elasticity of the FRP reinforcement. Upon finding that the ACI ( ACI 2021 ) equation often underpredicted the service load deflection of FRP reinforced concrete members, several attempts have been made in order to modify Eq.( 7) . For instance, Yost et al. ( 2021) claimed that the accuracy of Eq.( 7) primarily relied on the reinforcement ratio of the member. It was concluded that the formula could be of the same form, but that the bond dependent coefficient, α, had to be modified. A modification factor, α, was proposed in the following form: ??????????ba lFRP??? ( 9) where bal? =balanced reinforcement ratio. The ACI 440 Committee (ACI 2021) has also proposed revisions to the design equation in ACI (ACI 2021). The moment of inertia equation has retained the same familiar form as that of Eq. (7) in these revisions. However, the form of the reduction coefficient, , to be used in place of Eq. (8) was modified. The new reduction coefficient has changed the key variable in the equation from the modulus of elasticity to the relative reinforcement ratio as shown in the following equation: ??????????balF R P??? ( 10) Moment–Curvature Approach The moment–curvature approach for deflection calculation is based on the first principles of structural analysis. When a moment–curvature diagram is known, the virtual work method can be used to calculate the deflection of structural members under any load as dxEIMmL?? 0? ( 11) where L=simply supported length of the section。這些構(gòu)件與芳綸玻璃鋼鋼筋、玻璃玻璃鋼或碳纖維塑料筋配筋率、幾何和材料屬性不同。統(tǒng)計數(shù)據(jù)。本文只討論瞬時撓度。如果使用 FRP加固構(gòu)件,此時有效慣性矩可由方程( 2)所得 gcraae IIMMIMMI ??????? ?????????????????? crg3cr (2) 研究人員做了進一步的研究 ,以便于確定一個類似于方程式( 1)但更快捷的有效慣性矩方程。 SE =鋼筋的彈性模量。例如 ,約斯特等( 2021)認為 ,方程式( 7)的準確性主要依賴于其構(gòu)件的配 筋率,并得出結(jié)論,方程式的形式不變 ,但應(yīng)對α進行修改,由此得出α的方程式: ?????