freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

對數(shù)運算法則教案[優(yōu)秀范文5篇](存儲版)

2024-10-24 22:24上一頁面

下一頁面
  

【正文】 用特殊到一般的方法探究對數(shù)函數(shù)圖象的形成過程,加深感性認識。教師:你能類比前面研究指數(shù)函數(shù)的思路,提出研究對數(shù)函數(shù)圖象和性質的方法嗎? 學生2:先畫圖象,再根據(jù)圖象得出性質。由于函數(shù)概念十分抽象,又以對數(shù)運算為基礎,同時,初中函數(shù)教學要求降低,初中生運算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學的難度。(四)課堂練習:教材P68練習(五)課堂小結:(1)對數(shù)運算法則及其成立的條件是什么?(2)對數(shù)運算法則的綜合運用同時應注意掌握哪些變形技巧。n(3)我們知道am=am n,那mn如何表示,能用對數(shù)式運算嗎? ()解:設M=am則Mn=am()n==m,logaMn=mn所以logaMn=mn=nlogaM 即logaM=nlogaM(4)對數(shù)運算的作用:利用對數(shù)法則1和法則2可以使兩對數(shù)的積、商的對數(shù)轉化為兩對數(shù)的各自的對數(shù)的和、差運算,法則3是降級運算,這三個法則大大簡便了對數(shù)式的化簡和求值。m=logaM,N=an219。 對數(shù)與對數(shù)運算(第2課時)——對數(shù)的運算法則一、教學內容分析:本節(jié)課課程標準要求理解對數(shù)的運算法則,“對數(shù)的概念”后進行的,它是上節(jié)內容的延續(xù)與深入。提問:你能根據(jù)指數(shù)的法則按照以上的方法推出對數(shù)的其它法則嗎?(2)我們知道 a184。(2)lg5100。 對數(shù)運算法則 例1 復習引入例2 活動嘗試例3 小結第二篇:對數(shù)教案對數(shù)函數(shù)的圖像及性質一、教材分析本小節(jié)選自《普通高中課程標準數(shù)學教科書數(shù)學必修(一)》第二章基本初等函數(shù)(1)(第一課時),主要內容是學習對數(shù)函數(shù)的定義、圖象、性質及初步應用。四、教學目標1.通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;2.能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調性與特殊點;3.通過比較、對照的方法,引導學生結合圖象類比指數(shù)函數(shù),探索研究對數(shù)函數(shù)的性質,培養(yǎng)學生運用函數(shù)的觀點解決實際問題。觀察圖象,它們有哪些共同特征?步驟四:規(guī)納出能體現(xiàn)對數(shù)函數(shù)的代表性圖象。](三)理性認識、發(fā)現(xiàn)性質 1.確定探究問題教師:當我們對對數(shù)函數(shù)的圖象有了直觀認識后,就可以進一步研究對數(shù)函數(shù)的性質,提高我們對對數(shù)函數(shù)的理性認識。高中新課改的春風,帶來了函數(shù)教學設計上的創(chuàng)新,促使我們在學生學習方法上、教學內容的組織上、教學輔助手段上率先嘗試,但這只是一個起點,目前教學條件還受到制約,如圖形計算器未能普及、課時緊容量大,都影響函數(shù)的正常教學,通過這次活動希望能引起大家的廣泛關注并深入探討!第三篇:解對數(shù)不等式其中a b0且a,b均不等于1 1 若ab1,當f(x)1時,logbf(x)logaf(x)當f(x)屬于(0,1)時,logaf(x)logbf(x)2 若1ab0;當f(x)1時logbf(x)logaf(x)當0 logbf(x)3 若a1b0,當f(x)1時logaf(x)0logbf(x)當0 圖像()()四求與對數(shù)函數(shù)相關的復合函數(shù)的單調區(qū)間求復合函數(shù)y=f[g(x)] 的單調區(qū)間的步驟 1確定定義域將復合函數(shù)分解成基本初等函數(shù):y=f(u),u=g(x)3分別確定這兩個函數(shù)的單調區(qū)間若這兩個函數(shù)同增或同減,則y=f[g(x)]為增函數(shù)若一增一減,則y=f[g(x)]為減函數(shù)。三、學情分析本節(jié)面對的是高一的學生,這一年齡段的學生思維活躍,求知欲強,但在思維習慣上還不夠嚴謹,需要教師合理的引導,充分發(fā)揮學生主動性,創(chuàng)設疑問,主動思考,逐步解決問題。七、教學過程復習鞏固(1)對數(shù)的定義 一般地,如果ax=N(a0且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作:x=logaN(2)指數(shù)與對數(shù)的轉化ax=N(a0且a≠1)x=loga N 設計意圖:回顧對數(shù)定義的形成,加深指數(shù)到對數(shù)的轉化意識。利于學生理解和掌握,同時為下一步獨立推導性質2做鋪墊。對數(shù)運算性質的運用例3:用logax, logay, logaz表示下列各式:(1)logaxy z ,(2)loga x2 y z 3(1)logaxyz =logaxylogaz=logax+logayloga z(2)loga x2 y z 3 =loga(x2 y)loga z3 =logax2+log a yloga z3 =2logax+ 1 2 logay1 3 logaz 設計意圖:本題是對“對數(shù)的運算性質”的簡單運用。最后教師和學生一同推導一遍,能糾正學生的錯誤,規(guī)范書寫,再一次鞏固。同時,暗含對數(shù)運算性質的研究方向:積、商、冪。情感、態(tài)度與價值觀:由指數(shù)、對數(shù)的聯(lián)系入手,善于尋求事物之間的聯(lián)系;在知識探究的過程中養(yǎng)成合理猜想、大膽探索和實事求是的精神,感受學習數(shù)學的樂趣。本節(jié)的主要內容復習對數(shù)的定義,回顧對數(shù)與指數(shù)的聯(lián)系與轉化,進而猜測對數(shù)的運算性質與指數(shù)的運算性質的相關性;列舉指數(shù)的運算性質,并推導出對數(shù)的運算性質;例題鞏固,嘗試對數(shù)運算性質的應用;介紹換底公式及其推導過程。2logaM/N= logaMlogaN 3 logaMN
點擊復制文檔內容
公司管理相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1