【摘要】2.4.1向量的數量積(1)【學習目標】1.理解平面向量數量積的概念及其幾何意義2.掌握數量積的運算法則3.了解平面向量數量積與投影的關系【預習指導】1.已知兩個非零向量a與b,它們的夾角為?,則把數量_________________叫做向量a與b的數量積(或內積)。規(guī)定:零
2025-11-26 10:15
【摘要】同角三角函數的關系(1)【學習目標】1、掌握同角三角函數的兩個基本關系式2、能準確應用同角三角函數關系進行化簡、求值3、對于同角三角函數來說,認清什么叫“同角”,學會運用整體觀點看待角4、結合三角函數值的符號問題,求三角函數值【重點難點】同角三角函數的兩個基本關系式和應用【自主學習】一、數學
2025-11-11 01:06
【摘要】課題:向量的數乘(2)班級:姓名:學號:第學習小組【學習目標】1、理解兩個向量共線的含義,并掌握向量共線定理;2、能運用實數與向量的積解決有關問題?!菊n前預習】1、填空:(1)?||a??;(2)當0??時,a??與a?方向
2025-11-26 03:24
【摘要】兩角和與差的正弦、余弦、正切公式重點:公式的應用.難點:公式的推導及變形應用.六個公式的特征兩角和(差)的余弦:余余、正正、符號異(即公式右端分別是α與β的余弦之積,以及正弦之積,中間的符號與左邊相反);兩角和(差)的正弦:正余、余正、符號同;兩角和(差)的正切:分子同、分母異.它們的內在聯系如下:一、和(差)角的余弦公式
2025-11-26 06:46
【摘要】課題兩角和與差的正弦、余弦、正切公式(二)教學目標知識與技能理解以兩角差的余弦公式為基礎過程與方法推導兩角和、差正弦和正切公式的方法情感態(tài)度價值觀體會三角恒等變換特點的過程,理解推導過程,掌握其應用重點兩角和、差正弦和正切公式的推導過程及運用難點兩角和與差正弦、余弦和正切公式的
【摘要】課題兩角和與差的正弦、余弦、正切公式(一)教學目標知識與技能理解以兩角差的余弦公式為基礎,推導兩角和、差正弦和正切公式的方法過程與方法體會三角恒等變換特點的過程,理解推導過程,掌握其應用情感態(tài)度價值觀聯想觀察分析靈活運用公式重點兩角和、差正弦和正切公式的推導過程及運用難點兩角和與差正弦
【摘要】數學:“兩角差的余弦公式”教學設計一、教學內容解析三角恒等變換處于三角函數與數學變換的結合點和交匯點上,是前面所學三角函數知識的繼續(xù)與發(fā)展,是培養(yǎng)學生推理能力和運算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎和出發(fā)點,公式的發(fā)現和證明是本節(jié)課的重點,也是難點.由于和與差內在的聯系性與統(tǒng)一性,我們可以
2025-11-09 21:26
【摘要】課題:三角函數誘導公式(2)班級:姓名:一:學習目標導公式;式的探求和運用,培養(yǎng)化歸能力,提高學生分析問題和解決問題的能力.;二:課前預習(1)思想方法:從特殊到一般;數形結合思想;對稱變換思想;(2)規(guī)律:“奇變偶不變,符號看
2025-11-26 10:17
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(一)1.能根據兩角差的余弦公式推導出兩角和與差的正弦公式及兩角和的余弦公式,并能利用公式進行化簡求值.(重點)2.熟練掌握兩角和與差的正弦、余弦公式的特征和符號規(guī)律.(易混點)3.能正用、逆用、變形用公式進行化簡求值.
2025-11-25 18:51
【摘要】第三章三角恒等變換兩角和與差的正弦、余弦和正切公式兩角和與差的正弦、余弦、正切公式(二)1.能利用兩角和與差的正、余弦公式推導出兩角和與差的正切公式并能應用.(重點)2.能夠熟練地正用、逆用和變形應用兩角和與差的正切公式.(重點、難點)兩角和與差的正切公式做一做(1)已知tanα=1
【摘要】兩角和與差的余弦公式一.學習要點:兩角和與差的余弦公式及其簡單應用。二.學習過程:1.兩角和與差的余弦公式及推導:公式:
2025-11-18 23:39
【摘要】二倍角的三角函數(1)【學習目標】、余弦、正切公式;、化簡、恒等證明。【學習重點難點】[來重點:;。難點:理解倍角公式,用單角的三角函數表示二倍角的三角函數?!緦W習過程】(一)預習指導:、余弦、正切方式:sin(α+β)=(S???)cos
2025-11-11 01:05
【摘要】課題:二倍角的三角函數(1)班級:姓名:學號:第學習小組【學習目標】會用二倍角公式進行求值、化簡和證明【課前預習】1.sin()????;cos();tan()????????2、角?的三角函數與角?2
【摘要】兩角和與差的正弦公式一.學習要點:兩角和與差的正弦公式及其簡單應用。二.學習過程:1.兩角和與差的正弦公式及推導:公式:
2025-11-18 23:36
【摘要】兩角和與差的正弦、余弦、正切公式1.sin62°cos28°+cos62°sin28°的值為()A.-1B.1C.0解析:sin62°cos28°+cos62°sin28°=sin(62°+