【摘要】1復(fù)數(shù)的除法2復(fù)數(shù)除法的法則復(fù)數(shù)的除法是乘法的逆運算,滿足(c+di)(x+yi)=(a+bi)(c+di≠0)的復(fù)數(shù)x+yi,叫做復(fù)數(shù)a+bi除以復(fù)數(shù)c+di的商,記作.a+bic+di3a+bic+di=(a+bi)(c-di)(c+di
2024-11-18 01:21
【摘要】1復(fù)數(shù)的乘法與除法2一、復(fù)數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個復(fù)數(shù)的積仍是一個復(fù)數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1?(z2?z3),z
【摘要】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第3章第1課時復(fù)數(shù)的加法與減法課時作業(yè)新人教B版選修2-2一、選擇題1.已知z1=3-4i,z2=-5+2i,z1、z2對應(yīng)的點分別為P1、P2,則P2P1→對應(yīng)的復(fù)數(shù)為()A.-8+6iB.8-6iC.8+6iD.-2
2024-11-29 12:04
【摘要】第4課時導(dǎo)數(shù)的四則運算..你能利用導(dǎo)數(shù)的定義推導(dǎo)f(x)·g(x)的導(dǎo)數(shù)嗎?若能,請寫出推導(dǎo)過程.問題1:基本初等函數(shù)的導(dǎo)數(shù)公式表:①若f(x)=c,則f'(x)=;②若f(x)=xα(α∈Q),則f'(x)=;③若f(
2024-11-19 23:14
【摘要】第2課時復(fù)數(shù)代數(shù)形式的加減運算及其幾何意義..實數(shù)可以進(jìn)行加減運算,并且具有豐富的運算律,其運算結(jié)果仍是實數(shù);多項式也有相應(yīng)的加減運算和運算律;對于引入的復(fù)數(shù),其代數(shù)形式類似于一個多項式,當(dāng)然它也應(yīng)有加減運算,并且也有相應(yīng)的運算律.問題1:依據(jù)多項式的加法法則,得到復(fù)數(shù)加法的運算法
【摘要】《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(選修2-2)》數(shù)系的擴(kuò)充和復(fù)數(shù)的概念說課流程五教學(xué)過程數(shù)系的擴(kuò)充和復(fù)數(shù)的概念數(shù)系的擴(kuò)充與復(fù)數(shù)的引入是高中生必備的基礎(chǔ)知識.在本節(jié)中,學(xué)生將在問題情境中了解數(shù)系擴(kuò)充的過程以及引入復(fù)數(shù)的必要性,學(xué)習(xí)復(fù)數(shù)的一些基本知識,體會人類理性思維在數(shù)
2024-11-18 12:13
【摘要】復(fù)數(shù)的幾何意義2020年12月24日實部復(fù)數(shù)通常用字母z表示,即biaz??),(RbRa??虛部其中稱為虛數(shù)單位。i復(fù)數(shù)a+bi??????????????000000bababb,非純虛數(shù),純虛數(shù)虛數(shù)實數(shù)
2024-11-17 05:48
【摘要】復(fù)數(shù)的四則運算:復(fù)數(shù)z1=a+bi,z2=c+di,(a,b,c,d是實數(shù))z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.即:兩個復(fù)數(shù)相加
2024-11-10 01:36
【摘要】§本課時欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.理解復(fù)數(shù)代數(shù)形式的四則運算法則.2.能運用運算法則進(jìn)行復(fù)數(shù)的四則運算.【學(xué)法指導(dǎo)】復(fù)數(shù)的加減法和乘法運算可類比多項式的運算,不必專門記憶公式;復(fù)數(shù)除法的關(guān)鍵是“分母實數(shù)化”.§本課
2024-11-17 23:13
【摘要】數(shù)系的擴(kuò)充與復(fù)數(shù)的概念數(shù)系的擴(kuò)充自然數(shù)整數(shù)有理數(shù)無理數(shù)實數(shù)NZQR用圖形表示包含關(guān)系:復(fù)習(xí)回顧知識引入對于一元二次方程沒有實數(shù)根.012??x我們已經(jīng)知道:12??x我們能否將實數(shù)集進(jìn)行擴(kuò)充,使得在新的數(shù)集中,該問題能得到
2024-11-17 20:10
【摘要】?§復(fù)數(shù)的四則運算(一)一.教學(xué)目標(biāo)1.理解復(fù)數(shù)代數(shù)形式的四則運算法則;2.能運用運算律進(jìn)行復(fù)數(shù)的四則運算。二.重點、難點重點:了解復(fù)數(shù)的四則運算是一種新的規(guī)定,不是多項式運算法則合情推理的結(jié)果;掌握復(fù)數(shù)代數(shù)形式的四則運算法則;難點:理解復(fù)數(shù)代數(shù)形式的四則運算法則;會應(yīng)用法則解方程、因式分解等
2024-11-19 21:26
【摘要】復(fù)數(shù)代數(shù)形式的四則運算復(fù)數(shù)代數(shù)形式的乘除運算知識回顧已知兩復(fù)數(shù)z1=a+bi,z2=c+di(a,b,c,d是實數(shù))即:兩個復(fù)數(shù)相加(減)就是實部與實部,虛部與虛部分別相加(減).(1)加法法則:z1+z2=(a+c)+(b+d)i;
2024-11-19 13:11
【摘要】?§復(fù)數(shù)的四則運算(二)一.教學(xué)目標(biāo)(iiiii2321,2321,1,1,??????),再次鞏固復(fù)數(shù)的四則運算法則;,再次體會復(fù)數(shù)的四則運算是一種新的規(guī)定..,不是多項式運算法則合情推理的結(jié)果。二.重點、難點掌握幾個特殊的復(fù)數(shù);加強(qiáng)對新事物的科學(xué)認(rèn)識(可以用類比來記憶新事物,但使用之前應(yīng)推理、證
【摘要】數(shù)系的擴(kuò)充與復(fù)數(shù)的引入第三章復(fù)數(shù)的運算第2課時復(fù)數(shù)的乘法與除法第三章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)在研究復(fù)數(shù)的乘法時,我們注意到復(fù)數(shù)的形式就像一個二項式,類比二項式乘二項式的法則,我們可以得到復(fù)數(shù)乘法的法則讓第一項與第二項的各項分別相乘,再合并“同類
2024-11-17 20:06
【摘要】實數(shù)集的一些性質(zhì)和特點:(1)實數(shù)可以判定相等或不相等;(2)不相等的實數(shù)可以比較大小;(3)實數(shù)可以用數(shù)軸上的點表示;(4)實數(shù)可以進(jìn)行四則運算;(5)負(fù)實數(shù)不能進(jìn)行開偶次方根運算;……(1)實數(shù)集原有的有關(guān)性質(zhì)和特點能否推廣到復(fù)數(shù)集?(2)從復(fù)數(shù)的特點出發(fā),尋找復(fù)數(shù)集新的(實數(shù)集
2024-11-17 17:10