【摘要】等比數(shù)列求和古印度舍罕王打算重賞大臣達依爾——國際象棋發(fā)明人。這位大臣說:“陛下,請您在這張棋盤上的第一格內,賞給我1粒麥子,在第2格內給2粒,第3格內給4粒,依次類推,每小格內的麥粒數(shù)都是前1小格的2倍,直到64個格子。請給我足夠的麥粒以實現(xiàn)上述要求吧!”國王一聽,認為大臣的這個要求不高,就欣然同意了。
2024-11-03 15:44
【摘要】等比數(shù)列的前n項和(1)教學目標:等比數(shù)列前n項和公式及其獲取思路,會用等比數(shù)列的前n項和公式解決簡單的與前n項和有關的問題.2.提高學生的推理能力,培養(yǎng)學生應用意識.教學重點:等比數(shù)列前n項和公式的理解、推導及應用.教學難點:應用等差數(shù)列前n項和公式解決一些簡單的有關問題.
2024-12-05 10:13
【摘要】復習:等差數(shù)列等比數(shù)列定義通項公式性質Sn等比數(shù)列前n項和公式(1)64個格子1223344551667788你想得到什么樣的賞賜?陛下,賞小人一些麥粒就可以。OK請在第一個格子放1顆麥粒請在第二個格子放2顆麥粒請在第三個格子放4顆麥粒請在第四
2025-01-17 07:55
【摘要】等比數(shù)列的前n項和(一)自主學習知識梳理1.等比數(shù)列前n項和公式(1)公式:Sn=?????=?q≠1??q=1?.(2)注意:應用該公式時,一定不要忽略q=1的情況.2.等比數(shù)列前n項和的一個常用性質在等比數(shù)列中,若等比數(shù)
2024-12-05 06:40
【摘要】課時教學設計首頁授課教師:授課時間:10年9月8日課題課型新授課第幾課時1課時教學目標(三維)1..理解等比數(shù)列的前n項和公式的推導方法,體會轉化的思想;項和公式,并能運用公式解決簡單的問題,用方程的思想認識等比數(shù)列前項和公式,利用公式知三求
2025-08-18 16:48
【摘要】等比數(shù)列的前n項和(第一課時)等比數(shù)列的前n項和等比數(shù)列的前項和一、教材分析二、目標分析三、過程分析四、教法分析五、評價分析一、教材分析一、教材分析1.從在教材中的地位與作用來看《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內容,它不僅在現(xiàn)實生活中有著廣泛的實際應用,
2024-11-09 12:46
【摘要】等差數(shù)列的前n項和理解教材新知突破常考題型跨越高分障礙第二章題型一題型二應用落實體驗隨堂即時演練課時達標檢測題型三知識點一知識點二題型四[導入新知]數(shù)列的前n項和對于數(shù)列{an},一般地稱
2024-11-17 17:05
【摘要】課時教學設計首頁授課教師:授課時間:10年9月9日課題課型新授課第幾課時2課時教學目標(三維)項和公式,達到靈活應用的程度項和的性質,培養(yǎng)學生的類比歸納能力,提高學生的數(shù)學素養(yǎng)教學重點與難點
【摘要】第一頁,編輯于星期六:點三十四分。,2.4等比數(shù)列第二課時等比數(shù)列的性質,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四頁,編輯于星期六...
2024-10-22 18:53
【摘要】等比數(shù)列第一課時1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復利,5年內各年末本利和分別是10000(1+),10000(1+)2,10000(
2024-11-17 19:44
【摘要】第3講等比數(shù)列及其前n項和【2022年高考會這樣考】1.以等比數(shù)列的定義及等比中項為背景,考查等比數(shù)列的判定.2.考查通項公式、前n項和公式以及性質的應用.【復習指導】本節(jié)復習時,緊扣等比數(shù)列的定義,推導相關的公式與性質,通過基本題型的訓練,掌握通性、通法.基礎梳理1.等比數(shù)列的定義如果一個數(shù)列從
2025-04-30 04:33
【摘要】2.5等比數(shù)列的前n項和第一課時等比數(shù)列的前n項和課前預習·巧設計名師課堂·一點通創(chuàng)新演練·大沖關第二章數(shù)列考點一考點二課堂強化
2025-01-06 16:36
【摘要】【成才之路】2021年春高中數(shù)學第1章數(shù)列3等比數(shù)列第3課時等比數(shù)列的前n項和同步練習北師大版必修5一、選擇題1.設等比數(shù)列{an}的公比q=2,前n項和為Sn,則S4a2=()A.2B.4[答案]C[解析]S4=a11-q4
2024-12-05 06:37
【摘要】等比數(shù)列的前n項和(一)李超2020年9月(一)知識回顧::11???nnqaa:②在等比數(shù)列{}中,若則()naqpnm???qpnmaaaa?????Nqpnm
2024-09-28 12:18
【摘要】等比數(shù)列的前n項和(二)復習引入1.等比數(shù)列求和公式復習引入1.等比數(shù)列求和公式??????????)1(1)1()1(11qqqaqnaSnn復習引入1.等比數(shù)列求和公式?????????
2025-07-21 04:14