【正文】
1 . 0 2 . 0 yt?vTEE?v(R)PwT(R)E(R)?vPwT?u?(R)u??vPwTEu? k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0?vPwEu? yt(R) yt yt ytMe t h o d 1 1 :Co rreri aMe t h o d 1 2 :Ri g o ro u s J an b uMe t h o d 1 0 :Sarm a ( III )Me t h o d 9 :Sarm a ( II )TE?v?vTE(R ) k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0 k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0 k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0TEE?vPw?vPwT?uu??v(R )PwT(R )E(R )u?(R )? k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0?v(R )PwT(R )Eu??(R ) yt yt yt(R ) yt(R )Met h o d 7 :Sp en ce rMet h o d 8 :Mo rg en s t ern amp。Θ 180。ΛpP1166。0. 0 m15. 0 m①( a)( c)P = 0. Fs= 0 . 998P = 300 kN / m Fs= 1. 287(Fs= 1 . 357 , Co n v e n t i o n a l )Fs= 1. 5 P = 485 kN / m算例 1 算例 2 T a b l e 1. V a l ue s o f f a c t o r s o f s a fe t y a n d l o a d f a c t o r s? B= 0 . 0 ? B= 0 . 2 5 ? B= 0 . 5 ? B= 0 . 7 5 ? B= 1 . 0No . 166。ΛpFs166。Λp= 1 . Fs= 1 . 2Fs0Fs166。 Γ= 18 kN /m3c = 15. kP a? ?= 28 ?L a y e r ②166。Γkc166。Σppr166。 PriceSarma IISarma IIICorreriaRigorous JanbuFactor of safetyC on v e n t i on a l R i g or ou s?vTEE?v(R)PwT(R)E(R)?v(R)PwT( R)E(R)?u?(R)u??(R)?v(R)PwT(R)E(R)u??(R) k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0 k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0 k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0 k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0?v(R)PwT(R)E(R)u??(R) yt(R) yt(R) yt(R) yt(R)Me t h o d 3 :Si m p l i fi ed J an b uMe t h o d 4 :Co rp s o f E n g i n ee rsMe t h o d 2 :Si m p l i fi ed Bi s h o pMe t h o d 1 :O rd i n aryTE?v?vTE(R) k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0 k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0 k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0TEE?vPw?vPwT?uu??v(R)PwT(R)E(R)u?(R)? k Pa 8 0 0 6 0 0 4 0 0 2 0 0 0 2 0 0k N / m 8 0 0 0 6 0 0 0 4 0 0 0 2 0 0 002 0 0 0 2 . 0 1 . 0 0 1 . 0 2 . 0?v(R)PwT(R)Eu??(R) yt yt yt(R) yt(R)Me t h o d 7 :Sp en ce rMe t h o d 8 :Mo rg en s t ern amp。 B1, B ?1, B2, B ?2, B3, B ?3。 P ri c e e q . (4 4 ) e q . (4 5 a ) e q . (4 5 b ) e q . (2 0 ) S S S9 S a rm a ( II ) e q . (4 6 ) e q . (4 7 a ) e q . (4 7 b ) e q . (2 0 ) S S S10 S a rm a ( III ) e q . (4 8 ) e q . (4 9 a ) e q . (4 9 b ) e q . (2 0 ) S S S11 C o rr e ri a e q . (5 0 ) e q . (5 1 a ) e q . (5 1 b ) e q . (2 0 ) S S S12 嚴(yán)格 Ja n b u 法 e q . (5 2 ) e q . (5 3 a ) e q . (5 3 b ) e q . (2 6 ) S S AS注 : C = 考慮 , S = 滿足 , A S = 自動滿足;表中所列公式在 P a r t 2 部分。 ( 2) 考慮垂直方向力的平衡和對選定的求矩中心的力矩平衡(簡稱 VM組合)。 ? ( x )400300200100 0150100 50 0T ( x )E ( x )Pr es en t m e t ho dSpenc er m e t ho dPr es en t m e t ho dSpenc er m e t ho dSi m pl i f i e d B i s ho pm et ho du ( x )Pr es en t m e t ho dSpenc er m e t ho d(a ) L i n es o f t hr us t f o r c es(b ) D i s t r i bu t i o n o f t o t al no r m a l s t r es s es a l o ng t h e s l i p s u r f ac e(c ) M ag ni t ud e o f i nt er n al f o r c eskN / mkP a400300200100 0150100 50 0T ( x )E ( x )Pr es en t m e t ho dSpenc er m e t ho dPr es en t m e t ho dSpenc er m e t ho du ( x )? ( x )kN / mkP aSpenc er m e t ho dPr es en t m e t ho d(a ) L i n es o f t hr us t f o r c es(b ) D i s t r i bu t i o n o f t o t al no r m a l s t r es s es a l o ng t h e s l i p s u r f ac e(c ) M ag ni t ud e o f i nt er n al f o r c esT ( x )E ( x )u ( x )? ( x )202216001200 800 400 0300200 100 0kN / mP r es en t m e t ho dS penc er m e t ho d(a ) L i n es o f t hr us t f o r c es(b ) D i s t r i bu t i o n o f t o t al no r m a l s t r es s es a l o ng t h e s l i p s u r f ac e(c ) M ag ni t ud e o f