【摘要】導數(shù)及其應用?蘭州市第三十三中學劉建玲例1:⑴已知函數(shù)的導函數(shù)為,則a,b,c的取值為),,(為實常數(shù)cbacaxyba???26xy??
2025-07-18 22:34
【摘要】一、知識點1.導數(shù)應用的知識網(wǎng)絡結構圖:2.基本思想與基本方法:①數(shù)形轉化思想:從幾何直觀入手,理解函數(shù)單調性與其導數(shù)的關系,由導數(shù)的幾何意義直觀地探討出用求導的方法去研究,解決有導數(shù)函數(shù)的極值與最值問題。這體現(xiàn)了數(shù)學研究中理論與實踐的辯證關系,具有較大的實踐意義。②求有導數(shù)函數(shù)y=f(x
2024-11-09 06:29
【摘要】微分中值定理的證明題1.若在上連續(xù),在上可導,,證明:,使得:。證:構造函數(shù),則在上連續(xù),在內(nèi)可導,且,由羅爾中值定理知:,使 即:,而,故。2.設,證明:,使得。 證:將上等式變形得:作輔助函數(shù),則在上連續(xù),在內(nèi)可導, 由拉格朗日定理得:,即,即:。
2025-03-25 01:54
【摘要】教學設計第六章微分中值定理及其應用§1拉格朗日定理和函數(shù)的單調性題目:羅爾定理與拉格朗日定理一、教學目的:1.知識目標:分別掌握羅爾定理和拉格朗日定理及對應的幾何意義,掌握三個推論。2.能力目標:首先讓同學們知道微分中值定理包括四大定理(羅爾定理、拉格朗日定理、柯西定理、泰勒定理),然后通過學習羅爾定理,類比學習理解拉格朗日定理,培養(yǎng)學生
2025-04-17 00:14
【摘要】前頁結束后頁中值定理洛必達法則導數(shù)的應用結束第3章中值定理及導數(shù)應用前頁結束后頁定理1設函數(shù)滿足下列條件)(xf)()(bfaf?(3)(1)在閉區(qū)間上連續(xù);],[ba(
2025-01-19 09:14
【摘要】復習1、某點處導數(shù)的定義——這一點處的導數(shù)即為這一點處切線的斜率2、某點處導數(shù)的幾何意義——3、導函數(shù)的定義——4、由定義求導數(shù)的步驟(三步法)5、求導的公式與法則——如果函數(shù)f(x)、g(x)有導數(shù),那么6、求導的方法——
2024-11-06 23:03
【摘要】單元教學設計一、教案頭單元標題:微分中值定理單元教學學時8在整體設計中的位置第23-26次授課班級上課地點教學目標能力目標知識目標素質目標?能夠理解和掌握羅爾定理?能夠掌握拉格朗日定理并證明相關問題?能夠掌握導數(shù)判斷函數(shù)的單調性?能夠掌握柯西中值定理及洛比達法則洛爾定理、拉格朗日定理單調性、柯西定理、洛比達
2025-04-04 05:19
【摘要】吉首大學畢業(yè)論文本人鄭重聲明:所呈交的論文是本人在導師的指導下獨立進行研究所取得的研究成果。除了文中特別加以標注引用的內(nèi)容外,本論文不包含任何其他個人或集體已經(jīng)發(fā)表或撰寫的成果作品。對本文的研究做
2025-01-13 15:29
【摘要】《數(shù)學分析》教案第六章微分中值定理及其應用?教學目的:,領會其實質,為微分學的應用打好堅實的理論基礎;,會正確應用它求某些不定式的極限;,并能應用它解決一些有關的問題;,能根據(jù)函數(shù)的整體性態(tài)較為準確地描繪函數(shù)的圖象;、最小值,了解牛頓切線法。教學重點、難點:本章的重點是中值定理和泰勒公式,利用導數(shù)研究函數(shù)單調性、極值與凸性;難點是用輔助函數(shù)解
2025-06-07 19:25
【摘要】返回后頁前頁§2柯西中值定理和不定式極限一、柯西中值定理柯西中值定理是比拉格朗日定理更一定式極限的問題.般的中值定理,本節(jié)用它來解決求不二、不定式極限返回返回后頁前頁定理(柯西中值定理)設函數(shù),
2024-10-19 04:20
【摘要】畢業(yè)論文題目:拉格朗日插值及中值定理的應用湘潭大學畢業(yè)論文(設計)任務書論文(設計)題目:拉格朗日插值及中值定理的應用
2025-06-22 21:35
2025-08-16 20:47
【摘要】返回后頁前頁§2柯西中值定理和不定式極限一、柯西中值定理柯西中值定理是比拉格朗日定理更一定式極限的問題.般的中值定理,本節(jié)用它來解決求不二、不定式極限返回后頁前頁定理(柯西中值定理)設函數(shù),
2025-07-23 14:11
【摘要】§7.函數(shù)變化率在經(jīng)濟中的應用1.幾個經(jīng)濟學中常用的經(jīng)濟函數(shù)函數(shù)的導數(shù),又稱為函數(shù)的變化率,在經(jīng)濟上有很多的應用。(1)成本函數(shù)(2)需求函數(shù)(3)收益函數(shù)(4)利潤函數(shù)2.經(jīng)濟學中的邊際函數(shù)在經(jīng)濟管理上,往往需要判斷在現(xiàn)有的生產(chǎn)情況下,再增加生產(chǎn)量在經(jīng)濟上是否有利。經(jīng)濟管理人員
2025-04-29 00:34
【摘要】導數(shù)的綜合應用預測數(shù)據(jù)庫知識數(shù)據(jù)庫技能數(shù)據(jù)庫經(jīng)典例題備選1~56~1011~12知識數(shù)據(jù)庫技能數(shù)據(jù)庫預測數(shù)據(jù)庫經(jīng)典例題備選1~56~1011~12知識數(shù)據(jù)庫技能數(shù)據(jù)庫預測數(shù)據(jù)庫經(jīng)典例題備選1~56~1011~12知識數(shù)據(jù)庫技能數(shù)據(jù)庫
2025-02-21 12:14