【摘要】第四節(jié)隱函數(shù)的導(dǎo)數(shù)分布圖示★隱函數(shù)的導(dǎo)數(shù) ★例1★例2★例3 ★例4 ★例5★對數(shù)求導(dǎo)法 ★例6★例7 ★例8 ★例9★由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù) ★例10★例11 ★例12 ★例13★極坐標(biāo)表示的曲線的
2025-07-24 21:54
【摘要】1北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》河北隆堯第一中學(xué)2一、教學(xué)目標(biāo):1、知識與技能:會求函數(shù)的最大值與最小值。2、過程與方法:通過具體實例的分析,會利用導(dǎo)數(shù)求函數(shù)的最值。3、情感、態(tài)度與價值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點:函數(shù)最大值與最小值的求法教學(xué)難點:函數(shù)最
2025-08-05 06:05
【摘要】對數(shù)函數(shù)與指數(shù)函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義....,我們已經(jīng)掌握了初等函數(shù)中的冪函數(shù)、三角函數(shù)的導(dǎo)數(shù),但還缺少指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),而這就是我們今天要新學(xué)的內(nèi)容.有了指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),也就解決了初等函
2025-05-15 02:15
【摘要】(4).對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數(shù):
2025-01-18 17:16
【摘要】幾種常見函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí),過曲線某點的切線的斜率的精確描述與求值;物理學(xué)中,物體運動過程中,在某時刻的瞬時速度的精確描述與求值等,都是極限思想得到本質(zhì)相同的數(shù)學(xué)表達式,將它們抽象歸納為一個統(tǒng)一的概念和公式——導(dǎo)數(shù),導(dǎo)數(shù)源于實踐,又服務(wù)于實踐.:);()
2025-08-16 01:30
【摘要】1.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)本節(jié)重點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點:用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟.(5)對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(4)指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xx
2024-10-19 11:54
【摘要】§解析函數(shù)的高階導(dǎo)數(shù)一個解析函數(shù)不僅有一階導(dǎo)數(shù),而且有各高階導(dǎo)數(shù),它的值也可用函數(shù)在邊界上的值通過積分來表示.這一點和實變函數(shù)完全不同.一個實變函數(shù)在某一區(qū)間上可導(dǎo),它的導(dǎo)數(shù)在這區(qū)間上是否連續(xù)也不一定,更不要說它有高階導(dǎo)數(shù)存在了.定理解析函數(shù)f(z)的導(dǎo)數(shù)仍為解析函數(shù),它的n階導(dǎo)數(shù)為
2025-05-10 14:16
【摘要】利用導(dǎo)數(shù)研究函數(shù)的極值赤峰二中:朱明英數(shù)學(xué)選修2-2新課標(biāo)人教版B《利用導(dǎo)數(shù)研究函數(shù)的極值》是新課標(biāo)人教B版教材選修2-2第一章第三節(jié)的第二小節(jié)。第三章的內(nèi)容主要分為兩個部分:一是導(dǎo)數(shù)的概念、運算及其應(yīng)用;二是定積分的概念和微積分基本定理。本節(jié)屬于導(dǎo)數(shù)的應(yīng)用部分,是本章的
2025-07-18 10:48
【摘要】第四章初等函數(shù)的導(dǎo)數(shù)與積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分4-2指數(shù)函數(shù)的導(dǎo)數(shù)與積分4-3三角函數(shù)的導(dǎo)數(shù)與積分1.對數(shù)2.對數(shù)微分3.對數(shù)函數(shù)的積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分對數(shù)在對數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對數(shù)函數(shù),
2025-07-21 19:54
【摘要】常見函數(shù)的導(dǎo)數(shù)復(fù)習(xí)引入幾何意義:曲線在某點處的切線的斜率;(瞬時速度或瞬時加速度)導(dǎo)數(shù)的物理意義:物體在某一時刻的瞬時度。PQoxyy=f(x)割線切線T2、如何求切線的斜率?)Pk0(處切線的斜率無限趨近于點時,當(dāng)PQx??xxfxxfkPQ?
2024-11-24 22:57
【摘要】班級_______________姓名_____________________學(xué)習(xí)目標(biāo):,求函數(shù)的導(dǎo)數(shù);.復(fù)習(xí)回顧:;2.導(dǎo)數(shù)的幾何意義和物理意義分別是什么?知識點:導(dǎo)函數(shù)的概念:若函數(shù)在處的導(dǎo)數(shù)存在,,,對開區(qū)間內(nèi)每一個值,,在區(qū)間內(nèi),構(gòu)成一個新的函數(shù),(或).,如果不特別指明求某一點的導(dǎo)數(shù),那么求導(dǎo)數(shù)就是求導(dǎo)函數(shù).例證題:,并說明(1)(2)所求結(jié)果的幾何
2025-08-22 11:39
2025-07-25 05:39
【摘要】利用函數(shù)的導(dǎo)數(shù)求解“恒成立”求參數(shù)范圍問題(1)恒成立問題求參數(shù)范圍:例1已知函數(shù).(Ⅰ)若,求的取值范圍;(1)求a,b的值,(2)若對于任意的[0,3]都有成立,求c的取值范圍答案:1.解:(1)a=-3,b=4(2)9+8c9(2)恒成立問題求參數(shù)范圍:分離參數(shù)法。例2.已知函數(shù)(1)時
2025-03-24 12:44
【摘要】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個自變量x,y,但若固定其中一個自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2025-08-04 18:32
【摘要】選修1-2~常數(shù)與冪函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)公式表一、選擇題1.拋物線y=14x2在點(2,1)處的切線方程是()A.x-y-1=0B.x+y-3=0C.x-y+1=0D.x+y-1=0[答案]A[解析]∵y′=12x,y′|x=2=12×
2024-11-24 22:43