【摘要】八年級數(shù)學下冊練習題一1、如圖所示,在矩形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動;點Q沿DA邊從點D開始向點A以1cm/s的速度移動.如果P、Q同時出發(fā),用t(s)表示移動時間(0≤t≤6),那么:(1)當t為何值時,△QAP為等腰直角三角形?(2)當t為何值時,△QAP的面積為在矩形ABCD面積的?(3)求四邊形AQ
2025-04-07 02:15
【摘要】第一章勾股定理1探索勾股定理第一課時,較長的直角邊稱為,斜邊稱為.:直角三角形兩直角邊的平方和等于斜邊的.如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么.△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長的平方為()
2025-06-12 01:43
【摘要】第二課時剪四個與圖①完全相同的直角三角形,然后將它們拼成如圖②所示的圖形.(1)大正方形的邊長可以表示為,面積可以表示為.(2)大正方形由4個三角形和1個小正方形組成,面積可以表示為.對比兩種表示方法,可以得到等式:,
【摘要】第一章勾股定理1探索勾股定理第1課時探索勾股定理第一章勾股定理A知識要點分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練A知識要點分類練第1課時探索勾股定理知識點1勾股定理1.若一個直角三角形的兩直角邊的長分別為a,b,斜邊長為c,則下列關于a,b,
2025-06-17 21:20
【摘要】義務教育教科書(北師版)八年級數(shù)學上冊,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2024-10-22 10:57
【摘要】八年級數(shù)學同步練習題及答案:因式分解【模擬試題】(答題時間:60分鐘)一.選擇題1.下列等式中成立的是()A.(x-y)3=(-x-y)3B.(a-b)4=-(b-a)4C.(m-n)2=m2-n2D.(x+y)(x-y)=(-x-y)(-x+y)
2024-11-11 02:12
【摘要】第一篇:新北師大版八年級數(shù)學下冊第一章定理梳理 新北師大版八年級數(shù)學下冊第一章定理梳理等腰三角形 1、兩角分別相等且其中一組等角的對邊相等的兩個三角形全等。(AAS) 2、全等三角形的對應邊相等...
2024-11-16 00:33
【摘要】啟智培優(yōu)輔導大氣層1.月球表面因為沒有空氣,所以講話時聽不到聲音,晝夜溫差大,月球表面還出現(xiàn)許多環(huán)形山。2.地球表面有空氣。由空氣形成的大氣層像一件外衣一樣保護著地球,使地球上出現(xiàn)許多自然現(xiàn)象。你能舉例說明你見過的哪些自然現(xiàn)象與大氣有關嗎?學生舉例,教師歸納后導入探究內容。一、大氣的存在[討論]生活在地球上的你能感受到大氣的存在嗎?請舉例
2025-06-23 05:52
【摘要】第十七章 勾股定理 17.1 勾股定理 第1課時 勾股定理(1) 了解勾股定理的發(fā)現(xiàn)過程,理解并掌握勾股定理的內容,會用面積法證明勾股定理,能應用勾股定理進行簡單的計算. 重點 勾股定理的內...
2024-10-13 12:33
【摘要】探索勾股定理(第1課時)一、情境引入會標中央的圖案是趙爽弦圖,它與“勾股定理”有關,數(shù)學家曾建議用“勾股定理”的圖來作為與“外星人”聯(lián)系的信號.2020年世界數(shù)學家大會在我國北京召開,下圖是本屆數(shù)學家大會的會標:探究活動一:觀察下面地板磚示意圖:二、探索發(fā)現(xiàn)勾股定理
2024-11-09 21:04
【摘要】勾股定理的逆定理一、選擇題(每小題4分,共12分),每個小正方形的邊長為1,A,B,C是小正方形的頂點,則∠ABC的度數(shù)為()°°°°,在由單位正方形組成的網(wǎng)格圖中標有AB,CD,EF,GH四條線段,其中能構成直角三角形三邊的線段是(
2024-11-15 10:32
【摘要】市二中王娜知識點梳理?勾股定理:如果直角三角形的兩直角邊分別為a,b,斜邊為c,則有?直角三角形的判定:如果三角形的三邊長a,b,c滿足,那么這個三角形是直角三角形.222cba??222cba??第1題,字母A,B,C分別代表
2025-08-04 13:45
【摘要】第1頁共2頁八年級數(shù)學勾股定理及勾股逆定理基礎練習一、單選題(共5道,每道20分),兩直角邊長分別為3和4,下列說法正確的是()2525520,Rt△ABC中,AC=3,BC=4,分別以它的三邊為直徑向上作三個半圓,則陰影部分面積為()
2025-08-11 21:58
【摘要】第一章《勾股定理》單元測試卷班別:姓名:__________ 一、選擇題(本題共10小題,每小題3分,滿分30分)1.一直角三角形的斜邊長比一直角邊長大2,另一直角邊長為6,則斜邊長為( ?。? A.4B.8C.10 D.12
2025-06-24 19:35
【摘要】第一章第一章勾股定理勾股定理八年級數(shù)學北師大版·上冊探索勾股定理(第2課時)一、新課引入一、新課引入如圖,分別以直角三角形的三條邊為邊長向外作正方形,你能利用這個圖說明勾股定理的正確性嗎?一、新課引入一、新課引入方法一:方法二:“割”“補”分割為四個直角三角形和一個小正方形.補成大正方形,用大正方形的面積減
2025-06-21 05:34