freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

土木工程外文翻譯----混凝土應(yīng)力實驗-建筑結(jié)構(gòu)(存儲版)

2025-07-01 14:11上一頁面

下一頁面
  

【正文】 re parameters related to the characters of matrix an d steel fibers. The boundary conditions are as following: 1) X=0, Y=0; 2) X=0, dy/ dx=E0 / Ep; 3)X=1, Y=1, dy/ dx=0. It can be drawn from the boundary39。 (3)提高鋼纖維摻量對鋼纖維高強混凝土的抗拉強度特性的改善作用比對普通強度混凝土的改善作用明顯。 因此公式 (6)可以轉(zhuǎn)換為: (7) 下降段公式 下降段數(shù)學(xué)的模型為: ( 8) 式中: 和 為與基體和鋼纖維特性有關(guān)的參數(shù)。 當基體強度較高時,由于纖維拔斷的出現(xiàn)使得 F2 和 F3 型鋼纖維試件的軸拉曲線下降端呈階梯狀。 鋼纖維鋼筋混凝土單軸拉伸應(yīng)力 —— 應(yīng)變曲線 典型的鋼纖維高強混凝土軸拉應(yīng)力一 應(yīng)變?nèi)€ (為了便于比較,每組試件選出條典型曲線作為代表 ),表述了軸拉曲線隨基體強度的變化規(guī)律;表述了軸拉曲線隨鋼纖維 (F3 型 )摻量的變化規(guī)律。 在四種類型纖維種 F1型纖維的增韌效果最好, F2 型纖維長徑比最小,基體強度較高時出現(xiàn)了纖維拔斷現(xiàn)象,因此當基體強度增加時韌性指數(shù)不斷下降。 摻有四種鋼纖維及素混凝土試件基體強度與軸拉韌性指數(shù)的關(guān)系成比例,其中纖維混凝土試件中鋼纖維體積摻率均為 1. 0%。 若試驗中試件相對側(cè)面的拉應(yīng)變差大于平均值的 15%,該試件作廢。并且隨著基體強度升高,由于黏結(jié)力的增大,該纖維增強效率有持續(xù)提高。 三、試驗結(jié)果和分析 劈拉強度和軸拉極限強度 不同試件的劈拉強度和軸拉極限強度查表,在混凝土中增加鋼纖維的量可以提高它的劈拉強度和軸拉極限強度,兩種不同參數(shù)的鋼纖維鋼筋混凝土和普通混凝土 (它們的混合比例相同)的比率也可查表。 表一 、試件 用建筑結(jié)構(gòu)膠將軸拉試件粘貼于兩端的鋼墊板上。 材料 由四種不同類型的鋼纖維用于該試驗,這些纖維中三種是帶鉤的(和)一種是光滑的。對纖維混凝土增強機理進行研究,要獲得鋼纖維混凝土的受拉全過程曲線,采用軸拉方法最為適宜,但是要在試驗方法上作一定改進,并且試驗機要有足夠的剛度,來保證試驗過程的穩(wěn)定。 混凝土應(yīng)力實驗 一、實驗介紹 直徑很小的鋼纖維用于混凝土結(jié)構(gòu)可以大大的提高混凝土的抗拉承載能力。另外,在強力作用下,鋼筋混凝土的應(yīng)力 —— 應(yīng)變曲線受多種因素的影響。當鋼纖維摻量很低(為零或 %時),在荷載峰值采用低周反復(fù)加載曲線的外包絡(luò)線來獲得軸拉應(yīng)力 — — 應(yīng)變?nèi)€ .。粗骨料采用 5~ 20 石灰?guī)r碎石。 DRAMIX 型纖維因為長度是其它三種纖維長度的 2 倍,其斷裂韌性更好,在試驗曲線中可以看出在應(yīng)變達到后,其荷載強度仍然保持較高水平,直到 10000με應(yīng)變時荷載仍可保持其峰值水平的 50%左右。因為其與基體問的粘結(jié)力較小因此在試驗過程中 沒有纖維拔斷現(xiàn)象出現(xiàn)。 軸拉變形性能和韌性 初裂拉應(yīng)變和峰值荷載拉應(yīng)變 對試件四周四個夾式位移計測得的應(yīng)變值進行平均獲得試件的拉應(yīng)變值。 從上我們可以發(fā)現(xiàn),基體強度和纖維含量兩種參數(shù)的有規(guī)律的改變很相似,因此我們分析的重點應(yīng)放在韌性指數(shù)上。因此當基體強度較高時,軸拉應(yīng)力 —— 應(yīng)變曲線下降得更快,軸拉韌性指數(shù)也有所下降。當基體強度很高時 (C80),由于纖維拔斷現(xiàn)象影響了 F3 型的增韌效果, F4型鋼纖維的增韌效果叉反過來超過了 F3型鋼纖維。該現(xiàn)象體現(xiàn)了 Fl型纖維良好的增韌效果。 邊界條件為: 1) X=0, Y=0; 2) X=0, dy/ dx=E0 / Ep; 3)X=1, Y=1, dy/ dx=0. 由邊界條件可得公式 (5)可以簡化為: ( 5) 系數(shù) 可 以通過試驗數(shù)據(jù)回歸獲得 (6) 式中: E0 為圓點切線模量; EP 為峰值應(yīng)力點割線模量 (第一峰值 )。 (2)在摻入同種同量鋼纖維時,隨著基體強度的增加,鋼纖維高強混凝土與同配比素混凝土的初裂強度的比值基本不變;軸拉極限強度的比值有 所變化,且該變化對不同的纖維類型有所不同,鋼纖維與基體黏結(jié)性能好,且破壞時不被拉斷,則增強效果好。 while cracking from the basic to the crack width of interval (the corresponding strain of about 2020με) showed the fracture energy integral: toughening class steel fiber reinforced concrete enhanced class than the fracture energy of steel fiber reinforced concrete an average of 20%. from Table 3 also shows that most of the SFRC first peak corresponds to the limit of tensile strain value and plain concrete rather, in the 100με around, indicating a low rate of fibercontaining incorporation in improving the role of ultimate tensile strain of concrete is not very obvious. The toughening class SFRC second peak corresponds to a much greater strain, up to 1000με, From this second peak has greatly enhanced the appearance of toughness. DRAMIX Fiber because of the length of other three kinds of fiber length of 2 times the fracture toughness and better in the test curve can be seen in the strain is attained, the load continues to maintain a high level of intensity, until the strain when the load so as to maintain 10000με its peak level of 50%. 3 Results and Discussion 3. 1 Crack stress and ultimate tensile strength The crack stress and ultimate tensile strength of different specimens are listed in Table 3. The addition of steel fibers into concrete increased its crack stress an d ultimate tensile strength. And the ratios of these two parameters of SFRC to those of plain concreue (with the same mix proportion)are given in Table 3, too. 3. 1. 1 Effect of matrix strength an(1 fiber type From table 3. It can be seen that the effects of steel fibers 0n crack stress are little influenced by the matsix strength. That is to say. When the matrix strength increases, the ratios of crack stresses of SFRC ( with the same type of fibers contained)to those of plain concrete ones with the same mix proportion are invariable. However, the condition for ultimate tensile strength is different. When the matrix strength increases. these ratios of ultimate tensile strengths(shown in Table 3)vary dissimilarly according to the type of steel fiber. Moreover. the increments are bigger than those of crack stress. The heightening efficiency of fiber F1 for ultimate tensile strength rises as matrix strength increases. It is because that the strength of this kind of fiber is very high(1 100 MPa). No fiber broken was observed during the test and the hooked—ends of the fibers were straightened when the matrix strength was high(C80). The higher the matrix strength. this kind of steel fiber takes on its strengthening effect more efficiently for the increasing of bond stress. The strengths of fibers F2 and F3 are mid—high(700 MPa). They all have hooked ends and both of their surfaces are coarse. When the matrix strength was high(C80). fiber breaking occurred in the test. And this phenomenon impaired the heightening efficiency of these two kinds of steel fiber. S
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1