【正文】
urnaces rather easily. An example of calculating such a furnace device is given in [2]. As for boilers of larger capacity, work on developing controllable twozone furnaces is progressing slowly . The development of a furnace device using the socalled VIR technology (the transliterated abbreviation of the Russian introduction, innovation, and retrofitting) can be considered as holding promise in this respect. Those involved in bringing this technology to the state of industry standard encountered difficulties of an operational nature (the control of the process also presented certain difficulties). In our opinion, these difficulties are due to the fact that the distribution of fuel over fractions can be optimized to a limited extent and that the flow in the main furnace volume has a rather sluggish aerodynamic structure. It should also be noted that the device for firing the coarsest fractions of solid fuel in a spouting bed under the cold funnel is far from being technically perfect. Centrifugal dust concentrators have received acceptance for firing highreactive coals in schemes employing pulverizing fans to optimize the distribution of fuel as to its flowrate and fractions. The design of one such device is schematically shown in [9]. Figure shows a 大連交通大學(xué) 2020 屆本科生畢業(yè)設(shè)計(jì)外文翻譯 7 distribution of fuel flowrates among four tiers of burners that is close to the optimum one. This distribution can be controlled if we furnish dust concentrators with a device with variable blades, a solution that has an adequate effect on the furnace process. 大連交通大學(xué) 2020 屆本科生畢業(yè)設(shè)計(jì)外文翻譯 8 燃煤鍋爐的燃燒進(jìn)程控制 存在于火電廠的市場(chǎng)的燃料供應(yīng),某些操作參數(shù)需要改變(或保留)的情況下 ,以及經(jīng)濟(jì)和環(huán)境方面 傾向的 要求使他們變得更加嚴(yán)格的不穩(wěn)定趨勢(shì)是導(dǎo)致使控制燃燒與傳熱過程爐設(shè)備非常緊迫的主要因素。另一方面,控制鍋爐的燃燒進(jìn)程很可能意味著在某種條件下發(fā)成實(shí)質(zhì)性改變,在這種條件下發(fā)生燃燒和傳熱,目的是大幅度擴(kuò)大負(fù)荷量,盡量減 少熱損失,減少爐渣的污染程度,減少排放的有害物質(zhì),并且轉(zhuǎn)型成再燃物。(特別是某些揮發(fā)性的成分 Vdaf20%)。一旦通過燃燒器便在漩渦這方面具有優(yōu)勢(shì)。 在 a= ,噴嘴的初始噴射圓長等同于 10倍的 r0,噴射過渡段(在初始噴射結(jié)束時(shí))的半徑等同于 。對(duì)于控制蒸汽產(chǎn)量為 600噸 /小時(shí) TPE214 and TPE215 型鍋爐進(jìn)程,更多可能性是通過在兩個(gè)距離較大的層面上采用平面火焰燃燒器。定量關(guān)系被建立在以質(zhì)量和幾何參數(shù)的濃度為特征的參數(shù)上,質(zhì)量取決于混合噴射進(jìn)入有限空間的流量,幾何參數(shù)的濃度為 ?f Σ Fb/Ff, nb=idem,Gb=idem。該爐具有相同的噴嘴區(qū)域總出口橫斷面( Σ Fb )和相同的噴射速度聯(lián)系著這些區(qū)域( wb)。通過噴射用來制造一個(gè)很大的漩渦,用來覆蓋爐裝置的大部分體積,這種裝置是在爐膛四角布置燃燒器。四個(gè)可控火焰的鍋爐計(jì)劃被記述,它們遵循大型噴嘴彼此相噴射的原理,這其中的三個(gè)計(jì)劃已經(jīng)被實(shí)施了。在這種爐燃燒低質(zhì)煤的過程中,流量和爐的進(jìn)程計(jì)算分析被提出。我們認(rèn)為,這些困難是由于這樣一個(gè)事實(shí),即燃料的分配比例超過一定分?jǐn)?shù),導(dǎo)致可以優(yōu)化程度有限,流體在主爐容體中有著相當(dāng)緩慢的空氣動(dòng)力學(xué)結(jié)構(gòu)。這一設(shè)計(jì)思想,對(duì)鍋爐進(jìn)程控制有著很深刻的影響。發(fā)展?fàn)t技術(shù)所用到的所謂 VIR 技術(shù)(音譯縮寫俄羅斯引進(jìn),創(chuàng)新和改造),可以被視為這方面的曙光。蒸汽能力從501650噸 /小時(shí)這樣的氣動(dòng)方案鍋爐已經(jīng)被 ZiO 和 Sibener gomash 制造,并在俄羅斯等一些國外的發(fā)電站得到應(yīng)用。盡管火焰的溫度會(huì)下降,燃燒卻依然穩(wěn)定,這時(shí)因?yàn)槿剂虾涂諝獾幕旌线^程是在一個(gè)循序漸進(jìn)的水平上進(jìn)行的。nb =1) — 其中一個(gè)安排在反向表面 — 不得傾向下調(diào)超過 50度。 為便于說明,我們將估計(jì)當(dāng) ?f Σ Fb/Ff=idem是混合爐數(shù)量的影響。帶有高流速梯度的空間也變小,導(dǎo)致作為整體的爐子混合性變差。顯然,如果層之間的距離比較小,斷開或連接的行為對(duì)整個(gè)過 大連交通大學(xué) 2020 屆本科生畢業(yè)設(shè)計(jì)外文翻譯 10 程的影響可以忽略。第二種模型描述的是混合氣體燃燒器,第三種模式描述的是在爐膛內(nèi)的混合。顯然,越大的噴射距離(和其勢(shì)頭),造成的在爐膛內(nèi)持續(xù)存在的速度梯度的時(shí)間越長,一個(gè)參數(shù),確定如何流動(dòng)中完全混合。 同樣重要的是,對(duì)于鍋爐燃燒控制過程,當(dāng)固體燃料燃燒時(shí),也要優(yōu)化將燃料碾磨精化。當(dāng)然,火爐燃燒進(jìn)程的調(diào)整方法有諸如改變空氣過剩系數(shù),煙氣再循環(huán)率,燃料和空氣在鍋爐空間內(nèi)的分配,以及其它在鍋爐運(yùn)行期間書面的控制圖表。 as a consequence, the flame es closer to the waterwalls and the latter are contaminated with slag. One method by which the tangential bustion scheme can be improved consists of organizing the socalled concentric admission of large jets of airdust mixture and secondary air with the fuel and air nozzles spaced apart from one another over the furnace perimeter, acpanied by intensifying the ventilation of mills [9, 10]. Despite the fact that the temperature level in the flame decreases, the bustion does not bee less stable because the fuel mixes with air in a stepwise manner in a horizontal plane. Vortex furnace designs with large vortices the rotation axes of which are arranged transversely with respect to the main direction of gas flow have wide possibilities in terms of controlling the furnace process. In [1], four furnace schemes with a controllable flame are 大連交通大學(xué) 2020 屆本科生畢業(yè)設(shè)計(jì)外文翻譯 6 described, which employ the principle of large jets colliding with one another。 大連交通大學(xué) 2020 屆本科生畢業(yè)設(shè)計(jì)外文翻譯 1 Controlling the Furnace Process in CoalFired Boilers The unstable trends that exist in the market of fuel supplied to thermal power plants and the situations in which the parameters of their operation need to be changed (or preserved), as well as the tendency toward the economical and environmental requirements placed on them being more stringent, are factors that make the problem of controlling the bustion and heat transfer processes in furnace devices very urgent. The solution to this problem has two aspects. The first involves development of a bustion technology and,accordingly, the design of a furnace device when new installations are designed. The second in