freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

建筑外文翻譯--超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng)(存儲(chǔ)版)

  

【正文】 tries for the design of buildings and structures. For modern supertall buildings and structures, across wind loads and effects may surpass alongwind ones. Although researchers have been focusing on the plex problem for over 30 years now, the widely accepted database of acrosswind loads and putation methods of equivalent static wind loads have not been formed yet. Only a few countries have accordingly adopted the related contents and provisions in their codes. Therefore, studying acrosswind vibration and the equivalent static wind loads of supertall buildings and structures is of great theoretical significance and practical value in the field of structural design of supertall buildings and structures. The current paper thus reviews the research situation of acrosswind loads and effects of supertall buildings and structures both at home and abroad. Then, the research results given by us are presented. Finally, a case study of acrosswind loads and effects of a typical supertall structure is illustrated. Mechanism of acrosswind loads and effects Previous researches focused mainly on the mechanism of acrosswind load. Kwok pointed out that acrosswind excitation es from wake, inflow turbulence, and windstructure interaction effect, which could be recognized as aerodynamic damping. Solari attributed the acrosswind load to acrosswind turbulence and wake excitations, considering wake as the main excitation. Islam et al. and Kareem claimed that acrosswind responses are induced by lateral uniform pressure fluctuation due to separation shear layer and wake fluctuation. Currently, the mechanism of acrosswind load on tall buildings and structures has been recognized as inflow turbulence excitation, wake excitation, and aero elastic effect. Inflow turbulence and wake excitation are essentially the external aerodynamic force, which is collectively referred to in the present paper as aerodynamic force. Meanwhile, aero elastic effect can be treated as aerodynamic damping. Acrosswind aerodynamic force no longer conforms to quasisteady assumption as the alongwind one。盡管 30 年來(lái),研究人員一直關(guān)注這個(gè)問(wèn)題,但橫向風(fēng)荷載效應(yīng)的數(shù)據(jù)庫(kù)以及等效靜力風(fēng)荷載的計(jì)算方法還沒(méi)有被開(kāi)發(fā),大多數(shù)國(guó)家在荷載規(guī)范里還沒(méi)有相關(guān)的規(guī)定。高度為 443 米的芝加哥希爾斯塔保持了是世界上最高建筑物 26 年的記錄,現(xiàn)在還有幾十個(gè)超過(guò) 400 米的超高層建筑被建造。雖然研究人員已經(jīng)關(guān)注這個(gè)方向已經(jīng) 30 多年了,但能夠被廣泛接受的橫風(fēng)向荷載數(shù)據(jù)庫(kù)以及等效靜力荷載的計(jì)算方法還沒(méi)有形成。湍流以及尾流激勵(lì)一般是 外部空氣動(dòng)力,在本文章中,所涉及的統(tǒng)稱(chēng)為空氣動(dòng)力。 從 氣動(dòng)彈性模型 的動(dòng)態(tài)響應(yīng)確定橫風(fēng)向氣動(dòng)力 。 湍流強(qiáng)度被發(fā)現(xiàn)擴(kuò)大帶 氣動(dòng)力和降低峰值。此外 ,對(duì)于建筑和結(jié)構(gòu)復(fù)雜的配置 ,準(zhǔn)確的風(fēng)壓分布和空氣動(dòng)力難以 使用這種方法。 卡里姆進(jìn)行了一項(xiàng)實(shí)驗(yàn)研究。這個(gè)重要的研究成果使得研究人員認(rèn)識(shí)到橫風(fēng)向氣動(dòng)負(fù)阻尼的 存在。陳等人采用這種技術(shù)來(lái)研究橫風(fēng)向效應(yīng)和高層建筑結(jié)構(gòu)的動(dòng)態(tài)阻尼并提出了一個(gè)氣動(dòng) 阻尼公式。 確定氣動(dòng)阻尼的隨機(jī)振動(dòng)響應(yīng)的氣動(dòng)彈性 模型課采用適當(dāng)?shù)南到y(tǒng)識(shí)別技術(shù),其中包 括頻域法,時(shí)域的方法以及時(shí)域頻域的方法。秦和谷是第一個(gè)引入隨機(jī)空間識(shí)別方法于氣動(dòng)參數(shù)的確認(rèn)的研究 人員。然而公式的橫風(fēng)向代碼知適用于高層建筑高寬比小于六,這似乎很難滿(mǎn)足實(shí)際需要。因此需要更多地努力去解決工程設(shè)計(jì)問(wèn)題,同時(shí)進(jìn)一步發(fā)展風(fēng)工程。 總結(jié) 隨著 建筑高度不斷增加,橫風(fēng)向荷載效應(yīng)已經(jīng)成為超高層建筑結(jié)構(gòu)設(shè)計(jì)的重要因素。秦采用這種方法來(lái)確定高層建筑的氣動(dòng)阻尼。他們分析了影響建筑長(zhǎng)寬比、邊比、氣動(dòng)阻尼、結(jié)構(gòu)阻尼。然后用類(lèi)似史迪克的方法計(jì)算空氣阻尼。第三種方法是從氣動(dòng)彈性模型分離氣動(dòng)阻尼的的識(shí)別方法。特別是石和全等人做了一系列關(guān)于矩形建筑的邊率,建筑物橫截面形狀,建筑的面率的效應(yīng)以及用五元平衡的高層建筑橫風(fēng)向動(dòng)力設(shè)計(jì)的風(fēng)域條件。高頻力平衡技術(shù)自從 1970 年已經(jīng)逐漸發(fā)展起來(lái)。結(jié)果表明 , 橫風(fēng)向 湍流 對(duì)于橫風(fēng)向氣動(dòng)力的 貢獻(xiàn)比那些 激勵(lì) 要小的多 。因此,該方法很少使用。對(duì)不穩(wěn)定風(fēng)壓力來(lái)說(shuō),風(fēng)洞試驗(yàn)技術(shù)是目前研究橫向風(fēng)動(dòng)力的主要技術(shù)。 橫風(fēng)向荷載的激發(fā)主要由于被公認(rèn)為空氣動(dòng)力阻尼的尾流、空氣湍流以及風(fēng)荷載耦合作用。因此,強(qiáng)風(fēng)荷載將成為設(shè)計(jì)安全的超高層建筑結(jié)構(gòu)中的一個(gè)重要的控制因素。最后,我們會(huì)列舉我們研究成果在超高層建筑結(jié)構(gòu)中應(yīng)用的的案例。 obtaining generalized aerodynamic force directly from measuring base bending moment using high frequency force balance technique. Identification of acrosswind aerodynamic force from dynamic responses of aero elastic building model. This method employs acrosswind dynamic responses of the aero elastic building model, bining the dynamic characteristics of the model to identify acrosswind aerodynamic force. Melbourne and Cheung performed aero elastic model wind tunnel tests on a series of circular, square, hexagon, polygon with eight angles, square with reentrant angles and fillets, and tall or cylindrical structures with sections contracting along height. However, further studies showed that acrosswind aerodynamic damping force and aerodynamic force mixed together make it difficult to extract aerodynamic damping force accurately. As such, the method has been seldom used. Wind pressure integration method. Researchers have remended wind pressure integration to obtain more accurately the acrosswind aerodynamic forces on tall buildings. Islam et al . adopted this method to obtain acrosswind aerodynamic forces on tall buildings and structures. Cheng et al. experimentally studied acrosswind aerodynamic forces of typical buildings under different wind field conditions and derived empirical formulas for the power spectrum density of the acrosswind aerodynamic force reflecting the effects of turbulent intensity and turbulent scale. Turbulent intensity was found to
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1