【正文】
Salcai et al., 1997。 鳴謝 這項研究獲得了 GS 集團公司的支持 ,韓國教育部門的第 21 智庫集團也給予了幫助。出水中的氮含量在1418 mg/。 圖表四揭示了 A2OMBR 處理工藝中硝化和反硝化過程。在 A2O 工藝中磷的去除主要靠聚磷微生物的過量攝取,這些微生物生長緩慢,并且易受外界環(huán) 境的影響 (Carlos et al., 2021)。 磷元素是引起海洋赤潮的主要營養(yǎng)元素,因此減少出水中磷元素的含量十分必要。實驗得到的數(shù)據(jù)說明階段三比階段一和二的處理能力要低些,這是因為在階段三中有更多的生物固體進(jìn)入反應(yīng)池中。 在表一中對缺少污泥消化(步驟一)與具備污泥消化所得數(shù)據(jù)進(jìn)行了對比,具備污泥消化的試驗負(fù)荷為 gMLSS/gCOD.,與傳統(tǒng)的活性污泥法 gMLSS/gCOD 相比相對低些 (Tchobanoglous et al., 2021)。經(jīng)過熱化學(xué)消解反應(yīng)后懸浮物與污泥分離,經(jīng)過消解的污泥可用于后續(xù)的厭氧生物化學(xué)反應(yīng)(Vlyssides and Karlis, 2021)。 在好氧區(qū)域,曝氣頭被用來提供氧氣以使有機 物得到氧化和氨化,好氧池中的氧氣濃度維持在 mg/1,并通過溶解氧在線檢測儀來控制。 6H2O, mg CaCl2取得的數(shù)據(jù)然后用來評價這種混合系統(tǒng)的性能。在這些分解技術(shù)中,熱化學(xué)分解法被認(rèn)為是最簡單而且最有效的方法 (Weemaes and Verstraete, 1998),在熱化學(xué)分解法中,氫氧化鈉水解法又被認(rèn)為是最為有效的方法, (Rocker et al., 1999).。 剩余污泥的減少和 脫 氮除磷是污水處理廠兩個相關(guān)的重要 課 題。這座反應(yīng) 器運行在 兩種不同的 MLSS范圍。熱化學(xué)消化污泥 運 行 在 一個固定的 pH值 (11)和溫度 (75℃ )下,可溶解的 COD含量 為 25%。 MBR 過程 由于 具有 更長的 污泥齡 , 所以 處理程度 更 高 ,污泥的產(chǎn)量相對較低 (Wen et al., 2021)。 一般來說,在 A2O 工藝過程中既可以脫氮也可以除磷。 廢水 經(jīng)過預(yù)處理的廢水作為原水流入。 2H2O。 在五塊大小為 的濾膜作用下,好氧池中發(fā)生固液分離。所以這些污泥會被送入 MBR 反應(yīng)器的厭氧段。 在高濃度 MLSS 下處理量較低 (Visvanathan et al., 2021),因此 MBR 工藝的處理能力應(yīng)該小些 。 從這些數(shù)據(jù)可以看出,即便是引入污泥消化預(yù)處理 , A2O 的脫氮除磷效率也并沒得到改變。幸運的是磷元素的總含量一直維持在 1 mg/L(Mervat and Logan, 1996)。 在整個研究中,磷的去除率基本不受影響,一直處在 7482%。硝化是脫氮處理中最初的也是比較重要的一個過程,不徹底的硝化過程將使脫氮的處理效率大大降低 (Morita et al., 2021 and Choi et al., 2021).。 在整個研究中,橫隔膜的 壓力會逐漸增加,到第 210 天,壓力已經(jīng)達(dá)到 6cm 汞柱。 參考文獻(xiàn) 1. Akin, ., Ugurlu, A., 2021. The effect of an anoxic zone on biological phosphorus removal by a sequential batch reactor. Bioresour. Technol. 94, 17 2. APHA, 2021. Standard Methods for the Examination of Water and Wastewater, 21 st ed. American Public Health Association, American Water Works Association,Water Pollution and Control Federation, Washington, DC 3. Banu, ., Uan, I., Yeom, LT., 2021. Effect of ferrous sulphate on nitrification during simultaneous phosphorous removal from domestic wastewater using laboratory scale anoxic/oxic reactor. World J. Microbiol. Biotechnol. 24, 29812986 4. Choi, H., Jeong, Sw, Chung, Y 一 2021. Enhanced anaerobic gas production of waste activated sludge pretreated by pulse power technique. Bioresour Technol. 97, 198203 5. Choi, C., Lee, J., Lee, I., Iim, M., 2021. The effects on operation conditions of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bio reactor (IAMBR). Bioresour. Technol. 99, 53975401. 6. Guo, L., Li, ., Bo, X., Yang, Q., Zeng, G. M., Liao, ., Liu, J 一 2021. Impacts of sterilization, microwave and ultrasonification pretreatment on hydrogen producing using waste sludge. Bioresour. Technol. 99, 36513658 7. Iim, J., Park, C., Iim, ., Lee, M., Iim, S., Iim, ., Lee, J., 2021. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci. Bioeng. 95 (3), 271275 8. Li, H., Jin, Y., Mahar, R., Wang, Z., Nie, Y., 2021. Effects and model of alkaline waste activated sludge treatment. Bioresour. Technol. 99, 51405144 9. Lopez, ., Hooijmansa, ., Brdjanovicb, D., Gijzena, ., Mark, ., van Loosdrecht, 2021. Factors affecting the microbial populations at fullscale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands.、八 eater Res. 42, 23492360 10. Mervat, E., Logan, ., 199G. Removal of phosphorus from secondary effluent by a matrix filter. Desalination 10G, 247253 11. Tchobanoglous, G., Burton, F 土, David Stensel, H., 2021. Wastewater Engineering Treatment and Reuse, fourth ed. Mc Graw Hill publication, New York, USA Morita, M., Uemoto, H., Watanable, A., 2021. Nitrogen removal bioreactor capable of simultaneous nitrification and denitrification applicable to industrial wastewater treatment. J. Biotechnol. 131 (2), 24G252 12. Nishimura, F., 2021. Alternation and reduction characteristics of activated sludge by ozonation. Adv. Asian Environ. Eng. 1 (1), 1823 13. Peng, Y., Want, X., Wu,w, Li, J., Fan, J., 2021. Optimisation of anaerobic/anoxic/oxic process to improve performance and reduce operating costs. J. Chem. Technol Biotechnol. 81, 1391 一1397 , M., Goma, G., Begue, ., Louvel, L., Rols, ., 1999. Towards a reduction in excess sludge production in activated sludge processes:biomass physicochemical treatment and biodegradation. Appl. Microbiol. Biotechnol 51,883890 15. Rosenberger, S., Iruger, U., Witzig, R., Manz, W., Szewzyk, U., Iraume, M., 2021 Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res. 3G, 413418 16. Sakai, Y., Fukase, T., Yasui, H., Shibata, M., 1997. An activated sludge process without excess sludge production. Water Sci. Technol. 3G (11), 1G3 一 170 , , 1991. Phosphorous and Nitrogen Removal from Municipal Wastewater, Principles and Practice, Second edition. Lewis Publishers, New York, USA , C., Ben, ., Parameshwaran, I., 2021. Membrane separation bioreactors for wastewater treatment. Crit. Rev. Environ. Sci. Technol. 30 (1 ),148 , ., Iarlis, ., 2021. Thermalalkaline solubilisation of waste activated sludge as a pretreatment stage for anaerobic digestion. Bioresource Technology 91 (2), 20120G , ., Verstraete, ., 1998. Evaluation of current wet sludge disintegration techniques. . Biotechnol. 73, 8392 , M., Grootaerd, H., Simoens, F., Verstraete, W., 2021. Anaerobic digestion of ozonized biosolids.、八 eater Res. 34, 23302336 , X., Ding, H., Huang, X., Liu, R., 2021. Treatment of hospital wastewater using a submerged membrane bioreactor. Process Biochem. 39, 14271431. , S., Guo, J., Wang, R., 2021. Performance of a pilot scale submerged membrane bioreactor (MBR) in treating bathing wastewater. Bioresour. Technol. 99, G8346843 , H., Shibata, M., 1994. An innovative approach to reduce excess sludge production in the activated sludge process. Water . 30 (9), 1120 , ., Iim, ., Lee, ., 2021. Incorporation