【正文】
atiger vorspannung (reinforced concrete beams with selfacting prestressing). Der Bauinginieur. Freyssi, E. (1956). Birth of prestressing. Library translation 59, Cement and Concrete Association. Translated from French. Published by Travaux, JulyAugust 1954. Grote, J. and B. Marrey (2020). Freyssi, Prestressing and Europe 19301945. Paris: Editions du Linteau. La Grange, L. E. (1961). Moment redistribution in prestressed concrete beams and frames. Ph. D. thesis, University of Cambridge. Lin, T. Y. (1963). Load balancing method for design and analysis of prestressed concrete structures. Journ. Amer. Conc. Inst. 60/6, 719{742. Low, A. M. (1982). The preliminary design of prestressed concrete viaducts. Proc. Inst. Civ. Engrs 73, 351{364. Mattock, A. H., J. Yamazaki, and B. T. Kattula (1971). Comparative studyof prestressed concrete beams, with and without bond. ACI Journal 68, 116{125. Sch196。 es and ep thus coincide. Any line of thrust is itself a concordant profile. The designer is then faced with a slightly simpler problem。 if the steel is pretensioned, much of that strain capacity is taken out before bonding the steel to the concrete. Structures designed this way are normally designed to be in co mpression everywhere under permanent loads, but allowed to crack under high live load. The idea derives directly from the work of Dischinger (1936) and his work on the bridge at Aue in 1939 (Schonberg and Fichter 1939), as well as that of Finsterwalder (1939). It is primarily an ultimate load concept. The idea of partial prestressing derives from these ideas. The LoadBalancing philosophy, introduced by . Lin, uses prestressing to counter the effect of the permanent loads (Lin 1963). The sag of the cables causes an upward force on the beam, which counteracts the load on the beam. Clearly, only one load can be balanced, but if this is taken as the total dead weight, then under that load the beam will perceive only the axial prestress and will have no tendency to creep up or down. These three philosophies all have their champions, and heated debates take place between them as to which is the most fundamental. Section design From the outset it was recognised that prestressed concrete has to be checked at both the working load and the ultimate load. For steel structures, and those made from reinforced concrete, there is a fairly direct relationship between the load capacity under an allowable stress design, and that at the ultimate load under an ultimate strength design. Older codes were based on permissible stresses at the working load。 結(jié)論: 要成功的設(shè)計(jì)預(yù)應(yīng)力混凝土連續(xù)梁不能脫離對結(jié)構(gòu)的分析,自從第一個(gè)超靜定結(jié)構(gòu)被建造,這個(gè)方法已經(jīng)發(fā)展起來。 然而如果混凝土具有不同的老化程度,那么對于允許彎矩重新分配的結(jié)構(gòu),在不同部位產(chǎn)生的徐變大小也不一樣。設(shè)計(jì)師 有 意地選擇使用連續(xù)的纜索去引起附加力矩以減少負(fù)彎矩。如果靠改變截面或預(yù)加壓力來克服溫度產(chǎn)生的拉應(yīng)力是非常的不經(jīng)濟(jì)。逐步地調(diào)整可找出一組比較理想的受力使得它接近理想線的彎矩圖。纜索幾乎是直的,但它調(diào)整板的位置以便纜索更能接近中跨的梁底面。 1951 年鄭家富和維特在倫敦舉行解決連續(xù)性問題 的會議。短跨度在兩端將受拉應(yīng)力 。最經(jīng)濟(jì)的設(shè)計(jì), 是根據(jù) 預(yù)應(yīng)力 的包絡(luò)圖 ,通常是對右手邊的圖,那里的設(shè)計(jì)是 在所允許的 拉應(yīng)力 范圍內(nèi) 。 Figure 4: Gustave Magnel 其他的組合,可能需要在更復(fù)雜的 情況下 。關(guān)鍵 結(jié)構(gòu)都能正常使用 , 但 也不是一概而論 , 對于 中跨度 和部分超過一般 3 尺寸 ,其他 部位 有可能成為關(guān)鍵 結(jié)構(gòu)。 2 斷面設(shè)計(jì) 從一開始就被承認(rèn),預(yù)應(yīng)力混凝土要檢查兩個(gè) 狀態(tài):正常使用 負(fù)荷和極限 狀態(tài)負(fù) 荷。 這種想法 源 于 Dischinger 從 他 1936 2 年 的研究 和他 1939 年對奧厄大橋 的研究工作中得出 ( Sch196。 還有相關(guān)問題 需要討論,比如 預(yù)應(yīng)力 混凝土的工作機(jī)理是怎樣的? 因?yàn)?有好幾個(gè) 的 關(guān)于它的 思維方式。 這是 Freyssi 對 三座橋梁 的 觀察 結(jié)果 , 它坐落在 維希附近 的 Allier 河上 ,1927 年 完成。分析預(yù)應(yīng)力混凝土連續(xù)梁 1 緒論 這次會議是專門討論結(jié)構(gòu)分析的發(fā)展,而不是 討論 材料強(qiáng)度,但 對材料的認(rèn)識并用適當(dāng)?shù)募夹g(shù)分析結(jié)構(gòu)的組成 , 有助于 有效地利用預(yù)應(yīng)力混凝土 。用的是 預(yù)應(yīng)力混凝土( Freyssi 1956 年) 。這些不同的哲學(xué)是在一定程度上的矛盾,當(dāng)然也 包含年輕的工程師。onberg 和菲克特 1939年) ,以及 Finsterwalder( 1939 年) 。 對于 鋼結(jié)構(gòu),和那些鋼筋混凝土, 應(yīng)進(jìn)行 承載能力下 允許應(yīng)力設(shè)計(jì) 和 極限載荷下的極限強(qiáng)度設(shè)計(jì)。當(dāng) 纜 索 的 斷面形狀被定下來 。在任 一 截面 上 至少 要滿足 12種 不同的情況 ,但由于一個(gè) 截面有 六變數(shù),有兩個(gè)預(yù)應(yīng)力需要 給定 ,但問題 很難給定 ,這 不能 明顯的 看出 哪些 情況 是多余的。 縱軸允許 的 偏心 值用圖面 直接與橫截面比較, 如 圖 5 所示。 而更長的跨度將受 到偏心率和在底部拉 應(yīng)力 的限制 。基本原則和 專業(yè) 術(shù)語 早被 使用,但 用現(xiàn)代的 眼光去處理和 分析技術(shù)是不尋常的,而其中一個(gè) 被關(guān)注的難題是 估算預(yù)應(yīng)力損失。即使直線型鋼絲束下垂的次內(nèi)力比較大,大約 50%的負(fù)彎矩由恒載和活載所引起 。 溫度的影響 所有結(jié)構(gòu) 都會發(fā)生溫度變化 ,但 溫度變化對 預(yù)應(yīng)力混凝土連續(xù)梁 橋 結(jié)構(gòu) 的 影響,比 起 其他結(jié)構(gòu)更加明顯。 施工順序的影響 預(yù)應(yīng)力混凝土往往被用于較長的大跨度橋梁結(jié)構(gòu),它們 常常是按 是順序 施工的 。 當(dāng)結(jié)構(gòu)處于單獨(dú)結(jié)構(gòu)情形時(shí),通過利用臨時(shí)預(yù)應(yīng)力鋼索可 以導(dǎo)致更大的次彎矩,它隨支撐條 件 移動 而 改變。現(xiàn)在大家都認(rèn)為發(fā)生徐變都接近整體狀態(tài),設(shè)計(jì)者可以取這當(dāng)做設(shè)計(jì)參考和把這整體的狀態(tài)當(dāng)做梁工作的極限狀態(tài),這簡化了設(shè)計(jì)過程。在同一期間這種結(jié)構(gòu)分析方法也是非常值得我們深思。 new codes use moment capacities at the ultimate load. Different load factors are used in the two codes, but a structure which passes one code is likely to be acceptable under the other. 12 For prestressed concrete, those ideas do not hold, since the structure is highly stressed, even when unloaded. A small increase of load can cause some stress limits to be breached, while a large increase in load might be needed to cross other limits. The designer has considerable freedom to vary both the working load and ultimate load capacities independently。 a cable profile has to be chosen which not only satisfies the eccentricity limits (3) but is also concordant. That in itself is not a trivial operation, but is helped by the fact that the bending moment diagram that results from any load applied to a beam will itself be a concordant profile for a cable of constant force. Such loads are termed notional loads to distinguish them from the real loads on the structure. Superposition can be used to progressively build up a set of notional loads whose bending moment diagram gives the desired concordant profile. Temperature effects Temperature variations apply to all structures but the effect on prestressed concrete beams can be more pronounced than in other structures. The temperatu