【摘要】THANKS
2025-03-13 07:52
【摘要】線段的垂直平分線(1)我們曾經(jīng)利用折紙的方法得到:線段垂直平分線上的點到這條線段兩個端點距離相等.你能證明這一結(jié)論嗎?定理:線段垂直平分線上的點到這條線段兩個端點的距離相等已知:如圖,直線MN⊥AB,垂足是C,且AC=BC,P是MN上任意一點.求證:PA=PB.ACB
2025-08-01 13:44
【摘要】線段垂直平分線的性質(zhì)定理已知:線段AB,直線EF⊥AB,垂足為O,AO=BO,點P是EF上異于點O的任意一點.求證:PA=PB.ABPEFO∴PA=PB。證明:∵EF⊥AB(已知),∴∠POA=∠POB=90°(垂直的定義)。在△PAO和△PBO中,
2024-11-11 07:33
【摘要】線段的垂直平分線第一章三角形的證明第1課時線段的垂直平分線;線段垂直平分線的性質(zhì)定理及逆定理;(重點)算.(難點)學(xué)習(xí)目標(biāo)導(dǎo)入新課問題引入某區(qū)政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,試問該購物中心應(yīng)建于何處,才能使得它到三個小區(qū)的距離
2025-06-20 05:35
2024-11-09 06:54
【摘要】哈五中問題:如圖,A、B、C三個村莊合建一所學(xué)校,要求校址P點距離三個村莊都相等.請你幫助確定校址.???ABCABMNC??PMN?CABQ?ABMNP.Q.C?線段垂直平分線上的點和這條線
2024-11-09 05:26
【摘要】普陀區(qū)政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,請你規(guī)劃一下,該購物中心應(yīng)建于何處,才能使它到三個小區(qū)的距離相等?ABC問題?ABPMNPA=PBC直線MN⊥AB,垂足為C,且AC=CB.P1P1A=P1B……
2025-07-23 10:31
【摘要】線段的垂直平分線1、能夠利用尺規(guī)法作一條已知線段的垂直平分線,并能證明它的正確性。2、經(jīng)歷探索,證明線段垂直平分線性質(zhì)定理及其逆定理的過程,進(jìn)一步發(fā)展學(xué)生的推理證明意識和能力。3、能夠利用線段的垂直平分線的性質(zhì)定理及其逆定理證明相關(guān)結(jié)論,理解三角形三邊的垂直平分線相交于一點,這點到三角形三個頂點的距離相等。
2025-06-20 20:33
【摘要】線段的垂直平分線(第2課時)北師大版八年級數(shù)學(xué)下冊導(dǎo)入新知ABCD..性質(zhì):線段垂直平分線上的點到這條線段兩個端點的距離相等.判定:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.1.理解并掌握三角形三邊的垂直平分線
2024-12-29 02:23
【摘要】.......1、線段垂直平分線的性質(zhì)(1)垂直平分線性質(zhì)定理:線段垂直平分線上的點到這條線段兩個端點的距離相等.定理的作用:證明兩條線段相等(2)線段關(guān)于它的垂直平分線對稱.3、關(guān)于三角形三邊垂直平分線的定理
2025-06-27 22:15
【摘要】線段的垂直平分線八年級上冊教學(xué)目標(biāo)1.能運(yùn)用線段的垂直平分線的性質(zhì)解決簡單的實際問題。2.能夠利用直尺和圓規(guī)過一點作已知直線的垂線。復(fù)習(xí)1、什么叫做尺規(guī)作圖?(限定用直尺和圓規(guī)來畫圖,稱為尺規(guī)作圖)2、我們已經(jīng)學(xué)過的基本尺規(guī)作圖(1)作線段,使它等于已知線段的長;(2)作角,使它等于已知角;
2025-06-15 07:25
【摘要】第2課時線段垂直平分線、垂線的作法2新課導(dǎo)入如圖,已知線段AB,作線段AB的垂直平分線.推進(jìn)新課根據(jù)“到線段兩端距離相等的點在線段的垂直平分線上”,要作線段AB的垂直平分線,關(guān)鍵是找出到線段AB兩端距離相等的兩點.作法:CD你知道為什么嗎?(2)
2025-03-12 14:29
【摘要】八年級上冊線段的垂直平分線ACDBM實驗與探究:試驗:按以下方法,觀察線段是否是軸對稱圖形?請同學(xué)們在練習(xí)本上畫出線段AB及其中點M,再過點M畫出AB的垂線CD,沿直線CD將紙對折,觀察線段MA和MB是否完全重合?結(jié)論:線段MA和MB完全重合,因此,線段AB是軸對稱圖形
【摘要】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-17 03:41
【摘要】線段的垂直平分線某市政府為了方便居民的生活,計劃在三個住宅小區(qū)A、B、C之間修建一個購物中心,試問,該購物中心應(yīng)建于何處,才能使得它到三個小區(qū)的距離相等。ABC實際問題1ABL實際問題2在某國道L的同側(cè),有兩個工廠A、B,為了便于兩廠的工人看病,市政府計劃在公路邊上修建
2025-06-20 20:30