【摘要】第四章三角形第四節(jié)等腰三角形與直角三角形考點一等腰三角形的判定及性質(zhì)例1(2022·邵陽)如圖所示,在等腰△ABC中,AB=AC,∠A=36°,將△ABC中的∠A沿DE向下翻折,使點A落在點C處.若AE=,則BC的長是.【分析】由折疊可得到AE=
2025-06-21 06:01
【摘要】第三節(jié)全等三角形考點一全等三角形的判定例1(2022·四川成都中考)如圖,已知∠ABC=∠DCB,添加以下條件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AA
2025-06-15 20:42
【摘要】第三節(jié)全等三角形考點一全等三角形的判定例1(2022·四川成都中考)如圖,已知∠ABC=∠DCB,添加以下條件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC【分析】全等三角形的判定方法有SAS,ASA,A
2025-06-17 20:23
【摘要】第14講三角形與全等三角形考點三角形及其分類1.按邊分三邊都不相等的三角形三角形等腰三角形底邊和腰不相等的等腰三角形①。等邊三角形2.按角分②,
2025-06-18 00:15
2025-06-18 00:12
【摘要】第三節(jié)全等三角形考點一全等三角形的判定(5年2考)例1(2022·東營中考)如圖,在△ABC中,AB>AC,點D,E分別是邊AB,AC的中點,點F在BC邊上,連接DE,DF,EF,則添加下列哪一個條件后,仍無法判斷△FCE與△EDF全等()A.∠A=∠DFEB.B
2025-06-13 03:43
【摘要】第四章三角形第20講解直角三角形01課后作業(yè)02能力提升目錄導航課后作業(yè)1.(2022德州)如圖,在4×4的正方形方格圖形中,小正方形的頂點稱為格點,△ABC的頂點都在格點上,則∠BAC的正弦值是.55
2025-06-12 14:36
【摘要】第四節(jié)等腰三角形考點一等腰三角形的性質(zhì)與判定例1(2022·四川雅安中考)已知:如圖,在△ABC中,AB=AC,∠C=72°,BC=,以點B為圓心,BC為半徑畫弧,交AC于點D,則線段AD的長為()5【分析】根據(jù)等腰三角形的性質(zhì)和三角形外角的性質(zhì),得出AD=
2025-06-15 20:43
【摘要】《中考新導向初中總復習(數(shù)學)》配套課件第四章三角形第17課三角形全等1.三角形全等的判定方法有:__________、__________、__________、__________,直角三角形全等的判定除以上的方法外還有__________.一、考點知識,2.全等三角形的性質(zhì):對應邊___
2025-06-12 02:59
2025-06-20 19:54
【摘要】第五節(jié)解直角三角形及其應用考點一解直角三角形的實際應用命題角度?母子型例1(2022·河南)如圖所示,我國兩艘海監(jiān)船A,B在南海海域巡航,某一時刻,兩船同時收到指令,立即前往救援遇險拋錨的漁船C,此時B船在A船的正南方向5海里處,A船測得漁船C在其南偏東45°方向,B船測得漁船C在其南
2025-06-15 21:42
2025-06-16 01:08
2025-06-17 20:20
【摘要】第四章三角形第三節(jié)全等三角形考點全等三角形的判定與性質(zhì)例1(2022·河北)如圖,∠A=∠B=50°,P為AB的中點,點M為射線AC上(不與點A重合)的任意一點,連接MP,并使MP的延長線交射線BD于點N,設(shè)∠BPN=α.(1)求證:△APM≌△BPN;
2025-06-21 06:00
【摘要】相似三角形了解比例的基本性質(zhì),了解線段的比、成比例線段的概念,了解黃金分割.了解圖形相似的概念,了解相似多邊形和相似比,理解相似三角形的概念和性質(zhì).理解并掌握兩條直線被一組平行線所截,所得的對應線段成比例.理解并掌握相似三角形的判定定理.能夠利用相似三角形的判定定理和相似三角形的性質(zhì)定理證明和解決有關(guān)的問題.了解位似圖形的概念,能夠利用位似將一個圖
2025-06-12 14:27