【摘要】第十八章平行四邊形平行四邊形平行四邊形的性質(zhì)第1課時【基礎(chǔ)梳理】一、平行四邊形的定義及表示方法:兩組對邊分別平行的四邊形.:平行四邊形用“__”表示,如平行四邊形ABCD記作“______”.??ABCD二、平行四邊形的性質(zhì)對邊_____,對角_____.三、兩平
2025-06-20 05:35
【摘要】第十八章平行四邊形第2課時平行四邊形的性質(zhì)3學(xué)習(xí)指南知識管理歸類探究分層作業(yè)當(dāng)堂測評學(xué)習(xí)指南★本節(jié)學(xué)習(xí)主要解決以下問題★1.平行四邊形的性質(zhì)3此內(nèi)容為本節(jié)的重點.為此設(shè)計了【歸類探究】中的例1
2025-06-14 14:19
【摘要】第2課時平行四邊形對角線的性質(zhì)平行四邊形的對角線.互相平分知識點:平行四邊形的對角線互相平分【思路點撥】求線段相等,可以通過證含有所求證線段的兩個三角形全等,再根據(jù)全等三角形對應(yīng)邊相等,得出兩線段相等.例如圖,在?ABCD中,連接AC,BD相交于點O;求證:OA=OC,OB=OD.
2025-06-16 12:24
【摘要】平行四邊形的性質(zhì)第2課時【基礎(chǔ)梳理】平行四邊形對角線的性質(zhì)(1)如圖,平行四邊形ABCD的對角線相交于點O.∵四邊形ABCD是平行四邊形,∴AD__BC,AD∥BC,由AD∥BC,可得∠OAD=______,∠ODA=______,∴△AOD≌______,∴OA=___,OB=___.
2025-06-20 05:34
【摘要】平行四邊形的判定第2課時【基礎(chǔ)梳理】三角形的中位線:連接三角形兩邊_____的線段叫三角形的中位線.中點三角形的中位線_____于三角形的第三邊,并且等于_____________.平行第三邊的一半【自我診斷】(1)一個三角形只有一條中位線.()×
2025-06-12 12:44
【摘要】平行四邊形的判定第2課時到上一節(jié)課為止我們學(xué)習(xí)了幾種判定平行四邊形的方法?題.方法..,并能較熟練地應(yīng)用三角形中位線的性質(zhì)進行有關(guān)的證明和計算.將一根木棒從AB平移到DC,AB與DC之間有何位置關(guān)系、數(shù)量關(guān)系?ABCD四邊形ABCD是什么樣的圖形
2025-06-17 04:01
【摘要】第十八章平行四邊形平行四邊形平行四邊形的性質(zhì)第1課時,會初步運用這些性質(zhì)進行有關(guān)的證明和計算.,會用定義識別平行四邊形..觀察圖形,說出下列圖形邊的位置有什么特征?兩組對邊都不平行一組對邊平行,一組對邊不平行兩組對邊分別平行四邊形平行四邊形有兩組
2025-06-17 08:41
【摘要】平行四邊形的性質(zhì)第2課時:()的四邊形叫做平行四邊形。(1)平行四邊形的對邊().(2)平行四邊形的對角().平行相等相等DABC,□ABCD的周長是28cm,△ABC的周長是22cm,則AC的
2025-06-21 00:04
【摘要】第十八章平行四邊形平行四邊形平行四邊形的性質(zhì)第1課時平行四邊形邊角的性質(zhì)分別的四邊形叫做平行四邊形.平行四邊形的、..,一條直線上任意一點到另一條直線的距離,叫做這兩條平行線之間的距離.對邊平行對邊相等
2025-06-16 12:18
【摘要】平行四邊形的判定第1課時平行四邊形的判定(一)平行四邊形的判定定理(1)兩組對邊分別的四邊形是平行四邊形.(2)兩組對角分別的四邊形是平行四邊形.(3)對角線的四邊形是平行四邊形.相等相等互相平分探究點一:利用兩組對邊或兩組對角分別相等判定平行四邊形
2025-06-16 12:26
【摘要】第2課時平行四邊形的判定(二)一組對邊的四邊形是平行四邊形.(1)定義:連接三角形兩邊的線段叫做三角形的中位線.(2)定理:三角形的中位線于第三邊,并且第三邊的一半.平行且相等中點平行等于探究點一:利用一組對邊平
2025-06-16 12:20
【摘要】EE
【摘要】第十八章平行四邊形學(xué)練考數(shù)學(xué)八年級下冊R特殊的平行四邊形正方形第2課時正方形的判定
2025-06-15 03:51
【摘要】平行四邊形及特殊平行四邊形一、平行四邊形【知識梳理】1、掌握平行四邊形的概念和性質(zhì)2、四邊形的不穩(wěn)定性.3、掌握平行四邊形有關(guān)性質(zhì)和四邊形是平行四邊形的條件.4、能用平行四邊形的相關(guān)性質(zhì)和判定進行簡單的邏輯推理證明.【例題精講】( )A.兩
2025-06-19 23:09
【摘要】 平行四邊形的判定第1課時 平行四邊形的判定知識點1知識點2知識點3根據(jù)對邊關(guān)系判定平行四邊形圖,在四邊形ABCD中,AB∥CD,AB=CD,E為AB上一點,過點E作EF∥BC,交CD于點F,G為AD上一點,H為BC上一點,連接CG,GD=BH,則圖中的平行四邊形有(??D
2025-06-16 12:28