freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

導(dǎo)數(shù)各類題型方法總結(jié)-免費(fèi)閱讀

2025-06-24 12:10 上一頁面

下一頁面
  

【正文】 題2:切線的條數(shù)問題====以切點(diǎn)為未知數(shù)的方程的根的個(gè)數(shù)例已知函數(shù)在點(diǎn)處取得極小值-4,使其導(dǎo)數(shù)的的取值范圍為,求:(1)的解析式;(2)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.(1)由題意得:∴在上;在上;在上因此在處取得極小值∴①,②,③由①②③聯(lián)立得:,∴ (2)設(shè)切點(diǎn)Q,過令,求得:,方程有三個(gè)根。 最后,同學(xué)們在看例題時(shí),請注意尋找關(guān)鍵的等價(jià)變形和回歸的基礎(chǔ)一、基礎(chǔ)題型:函數(shù)的單調(diào)區(qū)間、極值、最值;不等式恒成立;此類問題提倡按以下三個(gè)步驟進(jìn)行解決:第一步:令得到兩個(gè)根;第二步:畫兩圖或列表;第三步:由圖表可知;其中不等式恒成立問題的實(shí)質(zhì)是函數(shù)的最值問題,常見處理方法有三種:第一種:分離變量求最值用分離變量時(shí)要特別注意是否需分類討論(0,=0,0)第二種:變更主元(即關(guān)于某字母的一次函數(shù))(已知誰的范圍就把誰作為主元);(請同學(xué)們參看2010省統(tǒng)測2)例1:設(shè)函數(shù)在區(qū)間D上的導(dǎo)數(shù)為,在區(qū)間D上的導(dǎo)數(shù)為,若在區(qū)間D上,恒成立,則稱函數(shù)在區(qū)間D上為“凸函數(shù)”,已知實(shí)數(shù)m是常數(shù),(1)若在區(qū)間上為“凸函數(shù)”,求m的取值范圍;(2)若對滿足的任何一個(gè)實(shí)數(shù),函數(shù)在區(qū)間上都為“凸函數(shù)”,求的最大值.解:由函數(shù) 得 (1) 在區(qū)間上為“凸函數(shù)”,則 在區(qū)間[0,3]上恒成立 解法一:從二次函數(shù)的區(qū)間最值入手:等價(jià)于 解法二:分離變量法:∵ 當(dāng)時(shí), 恒成立, 當(dāng)時(shí), 恒成立等價(jià)于的最大值()恒成立,而()是增函數(shù),則(2)∵當(dāng)時(shí)在區(qū)間上都為“凸函數(shù)” 則等價(jià)于當(dāng)時(shí) 恒成立 變更主元法 再等價(jià)于在恒成立(視為關(guān)于m的一次函數(shù)最值問題)22 請同學(xué)們參看2010第三次周考:例2:設(shè)函數(shù) (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值; (Ⅱ)若對任意的不等式恒成立,求a的取值范圍. (二次函數(shù)區(qū)間最值的例子)解:(Ⅰ) 3aaa3a令得的單調(diào)遞增區(qū)間為(a,3a)令得的單調(diào)遞減區(qū)間為(-,a)和(3a,+) ∴當(dāng)x=a時(shí),極小值= 當(dāng)x=3a時(shí),極大值=b. (Ⅱ)由||≤a,得:對任意的恒成立①則等價(jià)于這個(gè)二次函數(shù) 的對稱軸 (放縮法)即定義域在對稱軸的右邊,這個(gè)二次函數(shù)的最值問題:單調(diào)增函數(shù)的最值問題。 三、題型二:根的個(gè)數(shù)問題題1
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1