freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

數(shù)據(jù)挖掘基于約束的挖掘-免費(fèi)閱讀

  

【正文】 amp。 ? 按照對(duì) age 處理方式的不同,分為: 1. 用靜態(tài)方法把數(shù)值屬性離散化 ? 數(shù)值屬性可用預(yù)定義的概念層次加以離散化。 ? 原因 ? 不生成候選集,不用候選測(cè)試。(157頁(yè)圖 66) : 不包含任何頻繁 k項(xiàng)集的交易也不可能包含任何大于 k的頻繁集,下一步計(jì)算時(shí)刪除這些記錄。 ? 舉例: ? 規(guī)則形式: “ Body ???ead [support, confidence]‖. ? buys(x, ―diapers‖) ?? buys(x, ―beers‖) [%, 60%] ? major(x, ―CS‖) ^ takes(x, ―DB‖) ???grade(x, ―A‖) [1%, 75%] 關(guān)聯(lián)規(guī)則:基本概念 ? 給定 : (1)交易數(shù)據(jù)庫(kù) (2)每筆交易是:一個(gè)項(xiàng)目列表 (消費(fèi)者一次購(gòu)買(mǎi)活動(dòng)中購(gòu)買(mǎi)的商品 ) ? 查找 : 所有 描述一個(gè)項(xiàng)目集合與其他項(xiàng)目集合相關(guān)性的規(guī)則 ? ., 98% of people who purchase tires and auto accessories also get automotive services done ? 應(yīng)用 ? * ? 護(hù)理用品 (商店應(yīng)該怎樣提高護(hù)理用品的銷(xiāo)售? ) ? 家用電器 ? * (其他商品的庫(kù)存有什么影響 ?) ? 在產(chǎn)品直銷(xiāo)中使用 附加郵寄 規(guī)則度量:支持度與可信度 ? 查找所有的規(guī)則 X amp。 c:3。amp。= (5)group by C, (6)having sum(=100)amp。 d:3。 Y ? Z 具有最小支持度和可信度 ? 支持度 , s, 一次交易中包含{X 、 Y 、 Z}的 可能性 ? 置信度 , c, 包含 {X 、 Y}的交易中也包含 Z的 條件概率 交易 ID 購(gòu)買(mǎi)的商品2020 A ,B ,C1000 A ,C4000 A ,D5000 B ,E ,F設(shè)最小支持度為 50%, 最小可信度為 50%, 則可得到 ? A ? C (50%, %) ? C ? A (50%, 100%) 買(mǎi)尿布的客戶(hù) 二者都買(mǎi)的客戶(hù) 買(mǎi)啤酒的客戶(hù) 關(guān)聯(lián)規(guī)則挖掘:路線圖 ? 布爾 vs. 定量 關(guān)聯(lián) (基于規(guī)則中所處理數(shù)據(jù)的值類(lèi)型 ) ? buys(x, ―SQLServer‖) ^ buys(x, ―DMBook‖) ???buys(x, ―DBMiner‖) [%, 60%] ? age(x, ―30..39‖) ^ ine(x, ―42..48K‖) ???buys(x, ―PC‖) [1%, 75%] ? 單維 vs. 多維 關(guān)聯(lián) (基于規(guī)則中涉及的數(shù)據(jù)維 )(例子同上 ) ? 單層 vs. 多層 分析 (基于規(guī)則集所涉及的抽象層 ) ? 那個(gè)品種牌子的啤酒與那個(gè)牌子的尿布有關(guān)系 ? ? 各種擴(kuò)展 ? 相關(guān)性、因果分析 ?關(guān)聯(lián)并不一定意味著相關(guān)或因果 ? 最大模式和閉合項(xiàng)集 第 6章:從大數(shù)據(jù)庫(kù)中挖掘關(guān)聯(lián)規(guī)則 ? 關(guān)聯(lián)規(guī)則挖掘 ? ? ? 聯(lián)規(guī)則 ? ? ? 關(guān)聯(lián)規(guī)則挖掘 —一個(gè)例子 對(duì)于 A ? C: support = support({A 、 C}) = 50% confidence = support({A 、 C})/support({A}) = % Apriori的基本思想 : 頻繁項(xiàng)集的任何子集也一定是頻繁的 交易 ID 購(gòu)買(mǎi)商品2020 A ,B ,C1000 A ,C4000 A ,D5000 B ,E ,F頻繁項(xiàng)集 支持度{ A } 75%{ B } 50%{ C} 50%{ A ,C} 50%最小值尺度 50% 最小可信度 50% 關(guān)鍵步驟:挖掘頻繁集 ? 頻繁集 :是指滿(mǎn)足最小支持度的項(xiàng)目集合 ? 頻繁集的子集也一定是頻繁的 ? 如 , 如果 {AB} 是頻繁集,則 {A} {B} 也一定是頻繁集 ? 從 1到 k( k頻繁集)遞歸查找頻繁集 ? 用得到的頻繁集生成關(guān)聯(lián)規(guī)則 Apriori算法 ? 連接 : 用 Lk1自連接得到候選 k項(xiàng)集 Ck ? 修剪 : 一個(gè) k項(xiàng)集,如果他的一個(gè) k1項(xiàng)集(他的子集 )不是頻繁的,那他本身也不可能是頻繁的。 : 一個(gè)項(xiàng)集要想在整個(gè)數(shù)據(jù)庫(kù)中是頻繁的,那么他至少在數(shù)據(jù)庫(kù)的一個(gè)分割上是頻繁的。 ? 使用緊縮的數(shù)據(jù)結(jié)構(gòu) ? 避免重復(fù)數(shù)據(jù)庫(kù)掃描 ? 基本操作是計(jì)數(shù)和建立 FPtree 樹(shù) FPgrowth vs. Apriori: 相對(duì)于支持度的擴(kuò)展性 01020304050607080901000 0 . 5 1 1 . 5 2 2 . 5 3S u p p o r t t h r e s h o l d ( % )Run time(sec.)D 1 F P g r o w t h r u n t i m eD 1 A p r i o r i r u n t i m eData set T25I20D10K FPgrowth vs. TreeProjection:相對(duì)于支持度的擴(kuò)展性 0204060801001201400 0 . 5 1 1 . 5 2S u p p o r t t h r e s h o l d ( % )Runtime (sec.)D 2 F P g r o w t hD 2 T r e e P r o j e c t i o nData set T25I20D100K 關(guān)聯(lián)規(guī)則結(jié)果顯示 (Table Form ) 關(guān)聯(lián)規(guī)則可視化 Using Plane Graph 關(guān)聯(lián)規(guī)則可視化 Using Rule Graph 第 6章:從大數(shù)據(jù)庫(kù)中挖掘關(guān)聯(lián)規(guī)則 ? 關(guān)聯(lián)規(guī)則挖掘 ? ? ? 聯(lián)規(guī)則 ? ? ? 多層關(guān)聯(lián)規(guī)則 ? 項(xiàng)通常具有層次 ? 底層的項(xiàng)通常支持度也低 ? 某些特定層的規(guī)則可能更有意義 ? 交易數(shù)據(jù)庫(kù)可以按照維或?qū)泳幋a ? 可以進(jìn)行共享的多維挖掘 食品 面包 牛奶 脫脂奶 光明 統(tǒng)一 酸奶 白 黃 T I D I t e m sT1 { 1 1 1 , 1 2 1 , 2 1 1 , 2 2 1 }T2 { 1 1 1 , 2 1 1 , 2 2 2 , 3 2 3 }T3 { 1 1 2 , 1 2 2 , 2 2 1 , 4 1 1 }T4 { 1 1 1 , 1 2 1 }T5 { 1 1 1 , 1 2 2 , 2 1 1 , 2 2 1 , 4 1 3 }挖掘多層關(guān)聯(lián)規(guī)則 ? 自上而下,深度優(yōu)先的方法: ? 先找高層的“強(qiáng)”規(guī)則: 牛奶 174。 2. 帶數(shù)量的關(guān)聯(lián)規(guī)則 ? 根據(jù)數(shù)據(jù)的分布,動(dòng)態(tài)的把數(shù)值屬性離散化到不同的“箱”。min()=500 (7)with support threshold=1% (8)with confide
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1