【摘要】運用二次函數(shù)的性質(zhì)求實際問題的最大值和最小值的一般步驟:?求出函數(shù)解析式和自變量的取值范圍?配方變形,或利用公式求它的最大值或最小值。?檢查求得的最大值或最小值對應(yīng)的自變量的值必須在自變量的取值范圍內(nèi)。?頂點式,對稱軸和頂點坐標公式:?利潤=售價-進價.回味無窮:二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)
2025-05-13 16:24
【摘要】1某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:銷售單價x(元/件)…55607075…一周的銷售量y(件)…450400300250…(1)直接寫出y與x的函數(shù)關(guān)系式: ?。?)設(shè)一周的銷售利潤為S元,請求出S與x的函數(shù)
2025-03-24 06:13
【摘要】二次函數(shù)中的面積計算問題[典型例題]第10題例.如圖,二次函數(shù)圖象與軸交于A,B兩點(A在B的左邊),與軸交于點C,頂點為M,為直角三角形,圖象的對稱軸為直線,點是拋物線上位于兩點之間的一個動點,則的面積的最大值為(C)A.B.C.D.二次函數(shù)中面積問題常見類型:一、選擇填空中簡單應(yīng)用
2025-04-04 04:23
【摘要】二次函數(shù)1.最大利潤與二次函數(shù)?頂點式,對稱軸和頂點坐標公式:?利潤=售價-進價.駛向勝利的彼岸回味無窮二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)想一想P352?總利潤=每件利潤×銷售數(shù)量.何時橙子總產(chǎn)量最大?100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準備
2024-11-11 04:55
【摘要】實際問題與二次函數(shù)教案實驗中學(xué)李三紅教學(xué)目標:1.通過對實際問題情景的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。2.能用配方法或公式法求二次函數(shù)的最值,并由自變量的取值范圍確定實際問題的最值。復(fù)習(xí)回顧:1、二次函數(shù)的圖象是一條,
2024-11-23 12:40
【摘要】第六節(jié)二次函數(shù)基礎(chǔ)梳理1.二次函數(shù)解析式的三種形式(1)一般式:.(2)頂點式:.(3)交點式:.2.二次函數(shù)
2024-11-09 01:26
【摘要】九年級數(shù)學(xué)下冊三維目標一、知識與技能1.能靈活列反比例函數(shù)表達式解決一些實際問題.2.能綜合利用幾何、方程、反比例函數(shù)的知識解決一些實際問題.二、過程與方法1.經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題.2.體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強應(yīng)用意識,提高運用代數(shù)方法解決問題的能力.三、情感態(tài)度與價值
2024-12-08 21:54
【摘要】(2012南京市,24,8)某玩具由一個圓形區(qū)域和一個扇形區(qū)域組成,如圖,在⊙O1和扇形O2CD中,⊙O1與O2C、O2D分別相切于點A、B,已知∠CO2D=600,E、F是直線O1O2與⊙O1、扇形O2CD的兩個交點,且EF=24厘米,設(shè)⊙O1的半徑為x厘米.(1)用含x的代數(shù)式表示扇形O2CD的半徑;(2)若⊙O1、,當(dāng)⊙O1的半徑為多少時,該玩具的制作成本最?。?/span>
2025-04-04 04:24
【摘要】第1頁共6頁九年級數(shù)學(xué)二次函數(shù)深化解析(二次函數(shù))基礎(chǔ)練習(xí)試卷簡介:全卷測試時間30分鐘,滿分100分,共兩道大題:第一題選擇(11道,每道4分);第二題解答(4道,每道14分)。本套試卷立足課本,重點考查了同學(xué)們數(shù)形結(jié)合的能力:給出了函數(shù)圖象要會判斷二次函數(shù)解析式各項系數(shù)的正負,反之知道了二次函數(shù)解析
2025-08-12 19:46
2024-11-12 17:28
【摘要】咸陽育才中學(xué)電子教案課題。二次函數(shù)的圖像主備郝妮濤審核人上課人上課時間教學(xué)目標知識與能力:(1)理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響。(2)掌握二次函數(shù)的性質(zhì)與圖象,掌握從函數(shù)的性質(zhì)推斷圖象的方研究法。過程與方法:掌握從函數(shù)解析式、性質(zhì)出發(fā)去認識函數(shù)圖象的高度理解和研究函數(shù)的方法。情感態(tài)度和價值觀:讓學(xué)生感受數(shù)學(xué)思想
【摘要】本文格式為Word版,下載可任意編輯 初中數(shù)學(xué)二次函數(shù)解題技巧必看 每一門科目都有自己的學(xué)習(xí)方法,但其實都是萬變不離其中的,數(shù)學(xué)作為最燒腦的科目之一,也是要記、要背、要講技巧的。下面是我給大家整理...
2025-04-13 21:05
【摘要】中考數(shù)學(xué)二次函數(shù)綜合經(jīng)典題含答案 一、二次函數(shù) 1.在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(3,0),與y軸交于點C(0,3),頂點為G....
2025-03-31 07:34
【摘要】草演他山之石可以攻玉學(xué)海無涯揚帆起航《二次函數(shù)之面積問題》預(yù)習(xí)指南一、填寫下列有關(guān)一次函數(shù)之面積問題的內(nèi)容1.坐標系中處理面積問題,要尋找并利用_____________的線,通常有以下三種思路:①__________________(規(guī)則圖形);②__________________(分割求和、補形作差);③__________________(例
【摘要】成都市中考壓軸題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,
2025-04-04 04:25