freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學(xué)一模試題分類匯編——平行四邊形綜合含答案解析-免費(fèi)閱讀

  

【正文】 .∵∠EBC=90176?!唷螮AC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120176?!郃E和EC在同一條直線上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考點(diǎn):(1)、三角形全等的性質(zhì);(2)、矩形的性質(zhì).13.如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過(guò)點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.(1)求證:四邊形DEFG為菱形;(2)若CD=8,CF=4,求的值.【答案】(1)證明見(jiàn)試題解析;(2).【解析】試題分析:(1)由折疊的性質(zhì),可以得到DG=FG,ED=EF,∠1=∠2,由FG∥CD,可得∠1=∠3,再證明 FG=FE,即可得到四邊形DEFG為菱形;(2)在Rt△EFC中,用勾股定理列方程即可CD、CE,從而求出的值.試題解析:(1)由折疊的性質(zhì)可知:DG=FG,ED=EF,∠1=∠2,∵FG∥CD,∴∠2=∠3,∴FG=FE,∴DG=GF=EF=DE,∴四邊形DEFG為菱形;(2)設(shè)DE=x,根據(jù)折疊的性質(zhì),EF=DE=x,EC=8﹣x,在Rt△EFC中,即,解得:x=5,CE=8﹣x=3,∴=.考點(diǎn):1.翻折變換(折疊問(wèn)題);2.勾股定理;3.菱形的判定與性質(zhì);4.矩形的性質(zhì);5.綜合題.14.已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個(gè)頂點(diǎn)E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.(1)如圖①,當(dāng)四邊形EFGH為正方形時(shí),求△GFC的面積;(2)如圖②,當(dāng)四邊形EFGH為菱形,且BF=a時(shí),求△GFC的面積(用a表示);(3)在(2)的條件下,△GFC的面積能否等于2?請(qǐng)說(shuō)明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)過(guò)點(diǎn)G作GM⊥BC于M.在正方形EFGH中,∠HEF=90176。C且∠DEA=∠B39。由勾股定理得:AC=,∴△ABC的面積是BCAC=22=2;②如圖2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四邊形A′BDC是平行四邊形,∴A′C=BD=2,過(guò)C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30176。(2)①如圖2,過(guò)點(diǎn)P分別作PH⊥AD,PG⊥CD,垂足分別為H、.∵四邊形ABCD是正方形,P在對(duì)角線上,∴四邊形HPGD是正方形,∴PH=PG,PM⊥AB,設(shè)PH=PG=a,∵F是CD中點(diǎn),AD=6,則FD=3,=9,∵==,∴,解得a=2,∴AM=HP=2,MP=MGPG=62=4,又∵PA=PE, ∴AM=EM,AE=4,∵=,②設(shè)HP=b,由①可得AE=2b,MP=6b,∴=,解得b=,∵==,∴,∴當(dāng)b=,DF=4;當(dāng)b=,DF=9,即DF的長(zhǎng)為4或9。∠BPC=135176。由勾股定理得,AF2=FB′2+AB′2,∴AF=5,BF=3,過(guò)點(diǎn)B′作B′M⊥AB,B′N⊥AD,由三角形的面積法則可求得B′M=,再由勾股定理可求得B′N=,∴AN=B′M=,∴DN=ADAN==,在Rt△CB′N中,由勾股定理得,B′D= = ;如圖2,當(dāng)∠AFB′=90176。+45176。得到△ABG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADF≌△ABG,則DF=BG,再證明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代換得到EF=BE+DF.試題解析:(1)∵△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90176。D=,OD=AC=1,∴C39。作C39。∴∠P39。⊥AP交PD的延長(zhǎng)線于P39。∴AD=C39。(SAS),得BP=DP39。兩平行線m、n間的距離為4.求證:PA?PB=2AB.(3)(遷移應(yīng)用)如圖4,E為AB邊上一點(diǎn),ED⊥AD,CE⊥CB,垂足分別為D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點(diǎn),連接DM、CN.求△DEM與△CEN的周長(zhǎng)之和.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)5+【解析】分析:(1)、根據(jù)平行四邊形的性質(zhì)得出△ABF和△BCE的面積相等,過(guò)點(diǎn)B作OG⊥AF于G,OH⊥CE于H,從而得出AF=CE,然后證明△BOG和△BOH全等,從而得出∠BOG=∠BOH,即角平分線;(2)、過(guò)點(diǎn)P作PG⊥n于G,交m于F,根據(jù)平行線的性質(zhì)得出△CPF和△DPG全等,延長(zhǎng)BP交AC于E,證明△CPE和△DPB全等,根據(jù)等積法得出AB=APPB,從而得出答案;(3)、延長(zhǎng)AD,BC交于點(diǎn)G,過(guò)點(diǎn)A作AF⊥BC于F,設(shè)CF=x,根據(jù)Rt△ABF和Rt△ACF的勾股定理得出x的值,根據(jù)等積法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,從而得出兩個(gè)三角形的周長(zhǎng)之和.同理:EM+EN=AB詳解:證明:(1)如圖2, ∵四邊形ABCD是平行四邊形,∴S△ABF=S?ABCD,S△BCE=S?ABCD, ∴S△ABF=S△BCE,過(guò)點(diǎn)B作OG⊥AF于G,OH⊥CE于H, ∴S△ABF=AFBG,S△BCE=CEBH,∴AFBG=CEBH,即:AFBG=CEBH, ∵AF=CE, ∴BG=BH,在Rt△BOG和Rt△BOH中, ∴Rt△BOG≌Rt△BOH, ∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如圖3,過(guò)點(diǎn)P作PG⊥n于G,交m于F, ∵m∥n, ∴PF⊥AC,∴∠CFP=∠BGP=90176。DF,可得∠FDP39。G最大,其△ACC′的面積最大,并求此時(shí)的面積.【詳解】(1)由對(duì)稱得:CD=C39。+∠EDC39。=∠BAP,由(1)可知:∠FDP=45176。(SAS),∴BP=DP39。C的面積最大,連接BD,交AC于O,當(dāng)C39。故可證△AEG≌△AEF;(2)將△ADF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90176。得到△ABG,連結(jié)GM.則△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45176。時(shí),由題意可知此時(shí)四邊形EBFB′是正方形,AF=2,過(guò)點(diǎn)B′作B′N⊥AD,則四邊形A
點(diǎn)擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1