freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

《倍數(shù)和因數(shù)》數(shù)學(xué)教學(xué)反思-預(yù)覽頁

2024-12-06 00:45 上一頁面

下一頁面
 

【正文】 要找36的一兩個(gè)因數(shù)并不難,難就難在你有沒有能力把36的所有因數(shù)全部找出來?能不能?  由于這個(gè)問題有一點(diǎn)難度,所以陶老師作幾點(diǎn)說明: ?、偎伎家幌拢裁礃拥臄?shù)是36的因數(shù)? ?、诳梢元?dú)立完成,也可以同桌合作完成?! 。?)完成“試一試”,然后集體交流?! √剿饕粋€(gè)數(shù)的倍數(shù)和因數(shù)的特點(diǎn): ?、儆^察比較:一個(gè)數(shù)的倍數(shù)和因數(shù)有什么特點(diǎn)呢? ?、趯W(xué)生在小組內(nèi)進(jìn)行比較、分析、討論,然后集體交流?! W(xué)生嘗試尋找第二個(gè)完美數(shù),師提示:第二個(gè)完美數(shù)比20大,比30小,是個(gè)雙數(shù),而且正好是老師的年齡?! ≡嚿舷聛砦腋杏X學(xué)生對倍數(shù)因數(shù)間的相互依存關(guān)系理解不到位,看著學(xué)生我突然想到可以利用我與學(xué)生的關(guān)系呀。讓學(xué)生充分感受有條理、有序的思考是一種非常有效的學(xué)習(xí)方法?! 榱藥椭鷮W(xué)生理解數(shù)和數(shù)之間的倍數(shù)和因數(shù)關(guān)系,練習(xí)中我設(shè)計(jì)了72247。在課尾,我還設(shè)計(jì)了尋找“完美數(shù)”的活動(dòng),這一活動(dòng)充分調(diào)動(dòng)學(xué)生參與學(xué)習(xí)、主動(dòng)學(xué)習(xí)的積極性,并讓學(xué)生感受到了數(shù)學(xué)的神齊、有趣,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。c=a,表示b能被c整除。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。所以我上課時(shí)特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別?!  侗稊?shù)和因數(shù)》數(shù)學(xué)教學(xué)反思6今天這堂課其實(shí)是有點(diǎn)匆忙的。結(jié)果學(xué)生都不知道如何表達(dá)?! 〔粷M意的地方在于:對于找出36所有因數(shù)的有序思考沒有強(qiáng)調(diào)。2=18,36247。得出結(jié)論是這樣思考是可行的。今天在補(bǔ)充習(xí)題上出現(xiàn)了問題,我抓了幾個(gè)學(xué)生問為什么強(qiáng)調(diào)有序性,學(xué)生告訴我:因?yàn)榭梢钥吹们宄?,因?yàn)椴粫z漏。我在練習(xí)前,首先對昨天的內(nèi)容進(jìn)行了復(fù)習(xí)。有些符合要求的數(shù)不止1個(gè),要盡可能把這些數(shù)都找出來。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾??磥黹_始的復(fù)述學(xué)生純粹是無意識的模仿,是為模仿而模仿,教師沒有在學(xué)生模仿復(fù)述后進(jìn)一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會理解只要是兩個(gè)整數(shù)相乘等于12,12就是這兩個(gè)整數(shù)的倍數(shù),這兩個(gè)整數(shù)就都是12的因數(shù)。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測中沒有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。原來在老教材中沒有因數(shù)這個(gè)概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因?yàn)槲沂堑谝淮谓虒W(xué)這個(gè)內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭。a=n表示b能被a整除,b247。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式26=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡化了敘述和記憶的過程?!  侗稊?shù)和因數(shù)》數(shù)學(xué)教學(xué)反思8不知不覺,我們又進(jìn)行了第二單元的學(xué)習(xí)?! ∫酝鶖?shù)學(xué)教材中,概念教學(xué)的量很大?! ∫酝笞畲蠊s數(shù),最小公倍數(shù)時(shí),采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵(lì)方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。教材對質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計(jì)較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個(gè)數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程?! ∫唬簞?dòng)手操作探究方法.  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀?! ±贸朔ㄋ闶?,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:(1)3的倍數(shù)應(yīng)該是3與一個(gè)數(shù)相乘的積。最后讓學(xué)生通過討論發(fā)現(xiàn):(1)一個(gè)數(shù)的倍數(shù)個(gè)數(shù)是無限的(要用省略號)。找一個(gè)數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個(gè)數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進(jìn)一步理解。(2)一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補(bǔ)差工作;同時(shí)要注意教學(xué)中細(xì)節(jié)的處理。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計(jì),下面我來具體的’說一說?! ”稊?shù)和因數(shù)的意義。說完后再給學(xué)生一個(gè)提醒,并讓學(xué)生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時(shí)候讓學(xué)生自己寫一個(gè)算式,并說一說。在教學(xué)的時(shí)候,同時(shí)注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書寫的格式等意識,可以比較有序的找和無序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進(jìn)行練習(xí)的時(shí)候也會選擇剛才優(yōu)化過的好的方法進(jìn)行練習(xí)。先給學(xué)生足夠的時(shí)間讓學(xué)生自己去找,我們要相信他們藕能力做到?!  侗稊?shù)和因數(shù)》數(shù)學(xué)教學(xué)反思11簡單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時(shí),對于求一個(gè)數(shù)的因數(shù),及理解一個(gè)數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,感覺很清楚,明白。針對這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個(gè)問題:  寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。教學(xué)時(shí)我首先以拼圖比賽為素材,讓學(xué)生動(dòng)手操作快速把12個(gè)小正方形擺出一個(gè)長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)112=12,26=12,34=12三個(gè)乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個(gè)因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個(gè)數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。為了讓學(xué)生理解倍數(shù)與因數(shù)的含意,教學(xué)過程中,我立足體現(xiàn)一個(gè)“實(shí)”字,讓學(xué)生從算式中找出能整除的算式,揭示整除、倍數(shù)、因數(shù)之間的關(guān)系,再通過舉例去驗(yàn)證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識的規(guī)律。當(dāng)學(xué)生用自己的學(xué)號說整除、因數(shù)、倍數(shù)之間的關(guān)系時(shí),由于像順口溜,很有趣。倍數(shù)和因數(shù)是學(xué)生聞所未聞的兩個(gè)新概念,是純知識性的內(nèi)容,學(xué)起來比較枯燥?! ∽⒁庖龑?dǎo)學(xué)生進(jìn)行有效的合作學(xué)習(xí)。(其實(shí)這是我一貫的做法,必須在每個(gè)學(xué)生獨(dú)立思考的基礎(chǔ)上進(jìn)行合作學(xué)習(xí)?! 【毩?xí)設(shè)計(jì)由易到難,由淺入深,既鞏固了新知,又發(fā)展了思維?! ∫蓡枺阂婚_始的擺12個(gè)小正方形拼成長方形,得出三個(gè)積是12的乘法算式,我想這里的操作可否省去?一方面用去時(shí)間較多,對教學(xué)內(nèi)容關(guān)系不大,如果說是培養(yǎng)操作能力也不是在這個(gè)時(shí)候。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎(chǔ)知識。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)?! ≡俳淘O(shè)計(jì):  
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1