【摘要】第1頁共3頁七年級(jí)下冊(cè)數(shù)學(xué)三角形基礎(chǔ)題人教版一、單選題(共10道,每道10分)(),2cm,,5cm,9cm,8cm,15cm,8cm,9cm3,一邊等于7,那么該三角形的周長是()或17:CD平分∠ACB,DE∥AC且
2025-08-11 21:31
【摘要】第一篇:全等三角形證明為何非直角三角形 全等三角形證明為何非直角三角形 不能用ASS(角邊邊)證明 證明全等中的ASS 1)直角三角形ASS是可以的(HL) 2)非直角三角形不行A C ...
2024-10-23 07:54
【摘要】精品資源第19課三角形與全等三角形知識(shí)點(diǎn):三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關(guān)系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點(diǎn),邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-16 12:49
【摘要】三角形、全等三角形、軸對(duì)稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂
2025-07-24 01:22
【摘要】三角形全等的判定第1課時(shí)全等三角形與全等三角形的判定條件1.的兩個(gè)三角形叫做全等三角形,全等三角形的對(duì)應(yīng)邊____,對(duì)應(yīng)角____.2.兩個(gè)三角形只有一組或兩組對(duì)應(yīng)相等的元素,這兩個(gè)三角形全等;兩個(gè)三角形有三組對(duì)應(yīng)相等的元素,這兩個(gè)三角形
2024-11-09 04:27
【摘要】ADBC1:已知:AB=4,AC=2,D是BC中點(diǎn),AD是整數(shù),求AD長。2:已知:D是AB中點(diǎn),∠ACB=90°,求證:DABC:3:已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF21BACDF
2025-07-26 08:58
【摘要】證明三角形全等的常見題型全等三角形是初中幾何的重要內(nèi)容之一,全等三角形的學(xué)習(xí)是幾何入門最關(guān)鍵的一步,這部分內(nèi)容學(xué)習(xí)的好壞直接影響著今后的學(xué)習(xí)。而一些初學(xué)的同學(xué),雖然學(xué)習(xí)了幾種判定三角形全等的公理和推論,但往往仍不知如何根據(jù)已知條件證明兩個(gè)三角形全等。在輔導(dǎo)時(shí)可以抓住以下幾種證明三角形全等的常見題型,進(jìn)行分析。一、已知一邊與其一鄰角對(duì)應(yīng)相等1.證已知角的另一
2024-11-19 19:13
【摘要】全等三角形證明證明經(jīng)典50題1.已知:AB=4,AC=2,D是BC中點(diǎn),AD是整數(shù),求ADADBC2.已知:D是AB中點(diǎn),∠ACB=90°,求證:DABC3.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF214.已知:∠1=∠2,CD=DE,EF
2025-06-07 15:37
【摘要】1.已知:AB=4,AC=2,D是BC中點(diǎn),AD是整數(shù),求ADADBC2.已知:D是AB中點(diǎn),∠ACB=90°,求證:DABC3.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF214.已知:∠1=∠2,CD=DE,EF//AB,求
2025-03-24 07:41
【摘要】全等三角形經(jīng)典題目精選1.已知:AB=4,AC=2,D是BC中點(diǎn),AD是整數(shù),求ADADBC2.已知:D是AB中點(diǎn),∠ACB=90°,求證:DABC3.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF214.已知:∠1=∠2,CD=DE,EF//A
【摘要】《全等三角形》證明題題型歸類訓(xùn)練題型1:全等+等腰性質(zhì)1、如圖,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于點(diǎn)O.求證:(1)△ABC≌△AED;(2)OB=OE.2、已知:如圖,B、E、F、C四點(diǎn)在同一條直線上,AB=DC,BE=CF,∠B=∠C.求證:OA=OD.題型2:兩次全等1、AB
【摘要】精品資源《三角形》基礎(chǔ)測(cè)試一填空題(每小題3分,共18分):1.在△ABC中,∠A-∠C=25°,∠B-∠A=10°,則∠B=;2.如果三角形有兩邊的長分別為5a,3a,則第三邊x必須滿足的條件是;3.等腰三角形一邊等于5,另一邊等于8,則周長是;4.在△ABC中,已知AB
2025-03-24 05:44
【摘要】完美WORD格式全等三角形證明題精選 一.解答題(共30小題)1.四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為E、F.(1)求證:△ADE≌△CBF;(2)若AC與BD相交于點(diǎn)O,求證:AO=CO.2.如圖
【摘要】全等三角形證明全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對(duì)折也會(huì)構(gòu)成全等三角形。全等三角形判定方法一:SSS(邊邊邊),即三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.舉例:如下圖,AC=BD,AD=BC,求證∠A=∠B.證明:在△ACD與△BDC中{AC=BD,AD=BC,CD=CD.∴△ACD≌△BDC.(SSS)∴∠A=∠B.(全等
2025-06-07 15:25
【摘要】第1頁共2頁初中數(shù)學(xué)全等專題全等三角形的判定(下)一、單選題(共5道,每道20分),AB∥CD,AC∥BD,AD與BC交于O,AE⊥BC于E,DF⊥BC于F,那么圖中全等的三角形有()對(duì)對(duì)對(duì)對(duì),∠E=∠F=90°
2025-08-11 21:27