【摘要】教材地位與作用:本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時??家恍┙獯痤}。因此,正弦定理的知識非常重要。學情分析:作為高一學生,同學們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學生們在解決任意三角形的邊
2025-04-17 04:49
【摘要】第一篇:原創(chuàng)正弦定理證明 1.直角三角形中:sinA=,sinB=,sinC=1 即c= ∴abc,c=,c=.sinAsinBsinCacbcabc==sinAsinBsinC 2.斜三角形...
2024-10-03 21:41
【摘要】第一篇:正弦定理證明方法 正弦定理證明方法 方法1:用三角形外接圓 證明:任意三角形ABC,⊙,所以∠DAB=90度 因為同弧所對的圓周角相等,所以∠D等于∠ 類似可證其余兩個等式。 ∴a...
2024-10-06 06:34
【摘要】第一篇:向量證明正弦定理 向量證明正弦定理 表述:設(shè)三面角∠p-ABC的三個面角∠BpC,∠CpA,∠ApB所對的二面角依次為∠pA,∠pB,∠pC,則Sin∠pA/Sin∠BpC=Sin∠pB/...
2024-11-15 02:44
【摘要】第一篇:正弦定理的背景 正弦定理的背景 在△ABC中,a、b、c為角A、B、C的對邊,R為△ABC的外接圓半徑,則有 稱此定理為正弦定理。 正弦定理是由伊朗著名的天文學家阿布爾─威發(fā)﹝940-...
2024-10-06 07:15
【摘要】第一篇:正弦定理說課稿[模版] 正弦定理說課稿 尊敬的各位老師: 大家好!我叫是數(shù)學學院11級勵志班丁云紅,下面我將從以下幾個方面介紹我這堂課的教學設(shè)計。 一教材分析 本節(jié)知識是必修五第一章...
2024-11-12 12:01
【摘要】第一篇:正弦定理的說課稿 正弦定理的說課稿 大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設(shè)計。一教材分析 本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容...
2024-11-15 05:13
【摘要】第一篇:正弦定理的證明 正弦定理的證明 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2...
2024-10-28 14:27
【摘要】第一篇:《正弦定理》評課 《正弦定理》視頻課堂評課 高三年 曾燦波 本節(jié)課基本上實現(xiàn)了教學目標,從正弦定理的發(fā)現(xiàn)、向量法證明及正弦定理的簡單應(yīng)用實現(xiàn)了知識目標,并在教學過程中培養(yǎng)學生觀察、分解...
2024-10-03 14:26
【摘要】第一篇:正弦定理教案[定稿] 正弦定理和余弦定理正弦定理從容說課本章內(nèi)容是處理三角形中的邊角關(guān)系,與初中學習的三角形的邊與角的基本關(guān)系有密切的聯(lián)系,與已知三角形的邊和角相等判定三角形全等的知識...
2024-10-06 07:11
【摘要】第一篇:正弦定理的證明 正弦定理的證明 (方法一)可分為銳角三角形和鈍角三角形兩種情況:當DABC是銳角三角形時,設(shè)邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義,有CD=asinB=bsinA,則...
2024-10-06 07:29
【摘要】尋找最適合自己的學習方法正弦定理和余弦定理高考風向 、余弦定理的推導;、余弦定理判斷三角形的形狀和解三角形;、余弦定理、面積公式以及三角函數(shù)中恒等變換、誘導公式等知識點進行綜合考查.學習要領(lǐng) 、余弦定理的意義和作用;、余弦定理實現(xiàn)三角形中的邊角轉(zhuǎn)換,和三角函數(shù)性質(zhì)相結(jié)合.1.正弦定理:===2R,其中R是三角
2025-06-28 05:55
【摘要】第一篇:用向量法證明正弦定理教學設(shè)計(推薦) 用向量法證明正弦定理教學設(shè)計 一、教學目標 1、知識與技能:掌握正弦定理的內(nèi)容及其證明方法;會運用正弦定理解決一 些簡單的三角形度量問題。 2、...
2024-11-12 18:00
【摘要】第一篇:正弦定理與余弦定理的證明 在△ABC中,角A、B、C所對的邊分別為a、b、c,則有 a/sinA=b/sinB=c/sinC=2R(R為三角形外接圓的半徑) 正弦定理(Sinetheor...
【摘要】......正弦定理、余弦定理練習題年級__________班級_________學號_________姓名__________分數(shù)____一、選擇題(共20題,題分合計100分)△ABC中,sinA
2025-03-25 04:59