【摘要】基本知識(shí)排列與元素的順序有關(guān),組合與順序無(wú)關(guān).如231與213是兩個(gè)排列,2+3+1的和與2+1+3的和是一個(gè)組合.(一)兩個(gè)基本原理是排列和組合的基礎(chǔ)(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2+m3+…+mn種不同方法.(2)乘
2025-08-05 08:17
【摘要】本文格式為Word版,下載可任意編輯 排列組合常用方法總結(jié) 排列組合常用方法總結(jié) 總結(jié)就是對(duì)一個(gè)時(shí)期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它可以使我們更有效率,讓我...
2025-04-05 21:01
【摘要】博湖縣第三小學(xué)鄧文學(xué)小學(xué)數(shù)學(xué)第三冊(cè)教學(xué)課件內(nèi)容介紹授課密碼是1和2組成的兩位數(shù)12第一關(guān)第二關(guān)第三關(guān)第四關(guān)第五關(guān)?1、2、3能組成幾個(gè)兩位數(shù)?(請(qǐng)有序思考)第一關(guān)121321233132出口213112321
2025-11-12 23:07
【摘要】數(shù)學(xué)廣角樂(lè)樂(lè)小青今天是我的生日,我想請(qǐng)你到我家玩!好的??墒俏抑恢滥慵易≡诃h(huán)城西路,不知道門牌是幾號(hào)?樂(lè)樂(lè)小青我家的門牌是用1、2這兩個(gè)數(shù)組成的兩位數(shù)。她家的門牌是幾號(hào)呢?小朋友們,你們能幫幫我嗎?樂(lè)樂(lè)小青你們真聰明!我家的門牌是這兩個(gè)數(shù)中最大的那一個(gè)。
2025-08-01 16:22
【摘要】例解排列組合中涂色問(wèn)題于涂色問(wèn)題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,故這類問(wèn)題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見類型及求解方法。一、區(qū)域涂色問(wèn)題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①、②、③、④
2025-03-25 02:36
【摘要】【新狀元理科】【新狀元理科】排列組合綜合(拓展題)姓名:1、學(xué)校十佳歌手大賽的10名獲獎(jiǎng)選手中,每3人都要照一張合影。請(qǐng)問(wèn):需要拍多少?gòu)堈掌?、郭懿孜要從8門課程中選學(xué)3門,一共有多少種選法?如果數(shù)學(xué)課與鋼琴課時(shí)間沖突,不能同時(shí)學(xué),她一共有多少種選法?
2025-12-28 05:38
【摘要】排列組合21種模型:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種B、48種C、36種D、24種解析:把視為一人,且固定在的右邊,則本題相當(dāng)于4人的全排列,種,答案:.:元素相離(即不相鄰)問(wèn)題,可先把無(wú)位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元素的
2025-07-26 07:25
【摘要】排列組合加乘原理:排列組合
2025-03-24 03:20
【摘要】解排列、組合、概率的一般方法(1)重復(fù)取、還是不重復(fù)取即用、還是用,還是都不能用;(2)用乘法原理,還是加法原理(不要忘掉減法原理);(3)先組合,后排列;(4)防止元素重復(fù)使用;(5)三種主要類型:①特殊元素、特殊位置;②捆綁;③插空.例1、四份不同的信投放三個(gè)不同的信箱,有不同的投放方法.例2、四名教師到三個(gè)班級(jí)指導(dǎo)工作,每個(gè)班級(jí)必須分配教師
【摘要】排列組合的綜合應(yīng)用例1將4個(gè)不同的小球放入4個(gè)不同的盒子里,求在下列條件下各有多少種不同的放法.(1)恰有一個(gè)盒子里放2個(gè)球;(2)恰有兩個(gè)盒子是空盒.()23441144NCA==3222444412842NCACA=+=()典例講評(píng)例
2025-10-31 08:09
【摘要】引入:前面我們已經(jīng)學(xué)習(xí)和掌握了排列組合問(wèn)題的求解方法,下面我們要在復(fù)習(xí)、鞏固已掌握的方法的基礎(chǔ)上,學(xué)習(xí)和討論排列、組合的綜合問(wèn)題。和應(yīng)用問(wèn)題。問(wèn)題:解決排列組合問(wèn)題一般有哪些方法?應(yīng)注意什么問(wèn)題?解排列組合問(wèn)題時(shí),當(dāng)問(wèn)題分成互斥各類時(shí),根據(jù)加法原理,可用分類法;當(dāng)問(wèn)題考慮先后次序時(shí),根據(jù)乘法原理,可用位置
2025-10-31 01:54
【摘要】排列組合方法一解決排列組合問(wèn)題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59
【摘要】高中數(shù)學(xué)排列組合易錯(cuò)題分析排列組合問(wèn)題類型繁多、方法豐富、富于變化,稍不注意,,以饗讀者.1沒有理解兩個(gè)基本原理出錯(cuò)排列組合問(wèn)題基于兩個(gè)基本計(jì)數(shù)原理,即加法原理和乘法原理,故理解“分類用加、分步用乘”是解決排列組合問(wèn)題的前提.例1(1995年上海高考題)從6臺(tái)原裝計(jì)算機(jī)和5臺(tái)組裝計(jì)算機(jī)中任意選取5臺(tái),其中至少有原裝與組裝計(jì)算機(jī)各兩臺(tái),則不同的取法有種.誤解:因?yàn)榭?/span>
【摘要】基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問(wèn)題基礎(chǔ)知識(shí)1:知識(shí)結(jié)構(gòu)網(wǎng)絡(luò)圖復(fù)習(xí)名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類
2025-11-02 02:53
【摘要】解決排列組合中涂色問(wèn)題的常見方法及策略與涂色問(wèn)題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,故這類問(wèn)題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見類型及求解方法。一、區(qū)域涂色問(wèn)題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①
2025-07-26 07:24