【摘要】第一篇:正弦定理與余弦定理教案 正弦定理與余弦定理教案-------鄂倫春中學(xué)祁永臣 教學(xué)要求: 教學(xué)要求:通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法;::: 一...
2024-10-06 07:01
【摘要】正弦余弦定理證明教案【基礎(chǔ)知識精講】、三角形面積公式正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,并且都等于該三角形外接圓的直徑,即:===2R.面積公式:S△=bcsinA=absinC=acsinB.變形:(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA∶sinB∶sinC=a∶b∶c(3)sinA=,sinB=,sinC=.
2025-04-17 04:49
【摘要】余弦定理復(fù)習(xí)回顧::2.正弦定理的作用:解三角形:(1)已知兩邊及其中一邊所對的角(2)已知兩角及一邊sinsinsinabcABC??探究:問題:在△ABC中,已知a、b,和角C,求c。(即用a、b、C表示c)
2025-07-18 09:05
【摘要】正弦定理、余弦定理的綜合應(yīng)用正余弦定理的應(yīng)用1、(1)在△ABC中,已知a,b,c分別為內(nèi)角A,B,C的對邊,若b=2a,B=A+600,則A=______(2)在△ABC中,若B=300,AB=32,AC=
2024-08-25 02:23
【摘要】正弦定理及其變形RCcBbAa2sinsinsin???邊角分離ARasin2?BRbsin2?CRcsin2?AbcBacCabSABCsin21sin21sin21????BAbatantan22?
2024-08-25 01:47
【摘要】正弦定理和余弦定理練習(xí)題(新課標(biāo))1、選擇題1.在△ABC中,角A、B、C的對邊分別是a、b、c,A=,a=,b=1,則c等于()A.1B.2C.D.
2025-03-25 04:59
2024-08-13 16:35
【摘要】第一篇:正弦余弦定理典型題例 7月13-23作業(yè)早知道整體介紹必修五作業(yè)題備注7月13日專題一必修五整體把握,請您給出等差數(shù)列的起始課的教學(xué)設(shè)計,并突出您的創(chuàng)新點;,設(shè)計一個數(shù)列應(yīng)用的案例(可以是一...
2024-10-06 07:15
【摘要】正余弦定理的應(yīng)用1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系?180???CBAcbacba????,大角對大邊大邊對大角三角形中的邊角關(guān)系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-18 08:48
【摘要】正弦定理、余弦定理及其運用?一、考綱解讀?二、正弦定理及其變形?三、余弦定理及其變形?四、實際應(yīng)用問題中的基本概念和術(shù)語?五、例題講解?六、高考題再現(xiàn)?七、小結(jié)本節(jié)課內(nèi)容目錄:一、考綱解讀:在課標(biāo)及《教學(xué)要求》中對正弦定理、余弦定理的要求均為理解(B)。在高考試題中
2024-11-17 23:32
【摘要】余弦定理及其應(yīng)用【教學(xué)目標(biāo)】【知識與技能目標(biāo)】(1)了解并掌握余弦定理及其推導(dǎo)過程.(2)會利用余弦定理來求解簡單的斜三角形中有關(guān)邊、角方面的問題.(3)能利用計算器進(jìn)行簡單的計算(反三角).【過程與能力目標(biāo)】(1)用向量的方法證明余弦定理,不僅可以體現(xiàn)向量的工具性,更能加深對向量知識應(yīng)用的認(rèn)識.(2)通過引導(dǎo)、啟發(fā)、誘導(dǎo)學(xué)生發(fā)現(xiàn)并且順利推導(dǎo)出余弦定理的過程,
2025-06-19 00:57
【摘要】第一篇:正弦定理與余弦定理習(xí)題總結(jié) 正弦定理與余弦定理 ab :sinA=sinBc=sinC =2R,+c2-a :a=b+c-2bccosA,b=a+c-2accosB,cosA= △...
2024-10-06 07:29
【摘要】正、余弦定理綜合應(yīng)用(1)實際問題抽象概括示意圖數(shù)學(xué)模型推理演算數(shù)學(xué)模型的解實際問題的解還原說明實際問題應(yīng)用模型問題1.怎樣測量一個底部不能到達(dá)的建筑物的高度?如圖,在北京故宮的四個角上各矗立著一座角樓,如何通過測量,求得角樓的高度?
【摘要】1.3正弦定理、余弦定理的應(yīng)用學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入2020年10月12日,中國宣布了自己的探月計劃:中國將在2020年把“嫦娥一號”繞月衛(wèi)星送入太空,2020年實現(xiàn)發(fā)射軟著陸器登陸月球.路透社報道:中國將在2024年把人送上月球.
2024-11-18 08:11
【摘要】正、余弦定理應(yīng)用(2)例1.如果△A1B1C1的三個內(nèi)角的余弦值分別等于△A2B2C2的三個內(nèi)角的正弦值,則()(A)△A1B1C1和△A2B2C2都是銳角三角形(B)△A1B1C1和△A2B2C2都是鈍角三角形(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形(D)△A1