【摘要】二次函數(shù)y=ax2的圖象和性質(zhì)xy一.平面直角坐標(biāo)系:1.有關(guān)概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內(nèi)點的坐標(biāo):3.坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對是:一一對應(yīng).坐標(biāo)平面內(nèi)的任意一點M,都有
2024-11-21 23:43
【摘要】題課題二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)第1課時8教教學(xué)目標(biāo)知識與技能1)掌握二次函數(shù)的圖象和性質(zhì),運用配方法求解二次函數(shù)的對稱軸、頂點、y隨x的變化情況。數(shù)學(xué)思考1)通過二次函數(shù)頂點式的圖象和性質(zhì)討論二次函數(shù)y=ax2+bx+c一般形式的圖象性質(zhì)。問題解決1)通過對給定的一般二次函數(shù)形式進(jìn)行配方得到頂點
2025-04-16 12:39
【摘要】濟(jì)學(xué)教育 初四?上冊?第二單元?二次函數(shù)-第二課時二次函數(shù)概念及圖象性質(zhì)知識點一二次函數(shù)的概念一、二次函數(shù)的定義1.一般地,形如(為常數(shù),)的函數(shù)稱為的二次函數(shù),其中為自變量,為因變量,分別為二次函數(shù)的二次項、一次項和常數(shù)項系數(shù).2.任何二次函數(shù)都可以整理成(為常數(shù)
2025-04-04 04:24
【摘要】....北辰教育學(xué)科老師輔導(dǎo)講義學(xué)員姓名:劉海明年級:初三輔導(dǎo)科目:數(shù)學(xué)學(xué)科教師:陸軍授課日期授課時段17:30—19:30授課主題二次函數(shù)的圖像,性質(zhì)及常規(guī)題型的歸納,填空題18題關(guān)于平
2025-03-24 06:26
【摘要】二次函數(shù)??khxay???2的圖象(一)【學(xué)習(xí)目標(biāo)】1.知道二次函數(shù)kaxy??2與2axy?的聯(lián)系.kaxy??2的性質(zhì),并會應(yīng)用;【學(xué)法指導(dǎo)】類比一次函數(shù)的平移和二次函數(shù)2axy?的性質(zhì)學(xué)習(xí),要構(gòu)建一個知識體系?!緦W(xué)習(xí)過程】一、知識鏈接:直線12??xy可以看做是由直線xy2?
2024-11-22 03:15
【摘要】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質(zhì):a的絕對值越大,拋物線的開口越小。的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減小;時,有最小值.向下軸時,隨的增大而減小;時,隨的增大而增大;時,有最大值.2.的性質(zhì):上加
2025-06-23 13:54
【摘要】y=x2+c的圖象是什么?答:是拋物線?請?zhí)顚懴卤恚汉瘮?shù)開口方向?qū)ΨQ軸頂點坐標(biāo)Y的最值增減性在對稱軸左側(cè)在對稱軸右側(cè)y=ax2a>0a<0y=ax2+ca>0a<0向上Y軸(0,0)最小值是0Y隨x的增大而減小Y隨x的增
2024-11-21 00:15
【摘要】第二十五講二次函數(shù)的圖象與性質(zhì)(二)理一理:、性質(zhì)以及它們的圖象,進(jìn)行形與數(shù)、形與方程、形與不等式之間的相互轉(zhuǎn)換,是分析與解決函數(shù)問題的重要方法.△=0時,拋物線y=ax2+bx+c(a≠0)與x軸有個交點,一元二次方程ax2+bx+c=0有實根;當(dāng)△<0時,拋物線y=ax2+bx+c(a≠0)與
2024-11-19 12:03
【摘要】課題二次函數(shù)的圖像和性質(zhì)教學(xué)內(nèi)容一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二
2025-07-26 04:32
【摘要】二次函數(shù)的圖象和性質(zhì)1、小李從如圖所示的二次函數(shù)的圖象中,觀察得出了下面四條信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0.你認(rèn)為其中錯誤的有()yxO(第4題)A.2個 B.3個 C.4個 D.1個第1題(-1,2)和點N(
【摘要】4.2二次函數(shù)的性質(zhì)學(xué)習(xí)導(dǎo)航學(xué)習(xí)目標(biāo)重點難點重點:利用配方法研究y=ax2+bx+c的性質(zhì).難點:求二次函數(shù)在給定區(qū)間上的最大值、最小值.新知初探·思維啟動二次函數(shù)的性質(zhì)二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)如下表:a的符號
2024-11-09 02:28
【摘要】專項一選擇、填空題專項一、二次函數(shù)的圖像與性質(zhì)中考解讀:二次函數(shù)的圖像與性質(zhì)為陜西中考選擇題必考題,題位為第10題,分值為3分。主要考查的內(nèi)容有(1)二次函數(shù)的圖像與系數(shù)的關(guān)系;(2)二次函數(shù)的增減性;(3)二次函數(shù)圖像的平移、旋轉(zhuǎn)變換等。例1已知點A(m,y1),B(m+2,y2),C(x0,y0)在二次函數(shù)y=ax
2025-06-11 23:52
【摘要】二次函數(shù)的圖像與性質(zhì)專項練習(xí)【知識要點】1.二次函數(shù):形如的函數(shù)叫做二次函數(shù).2.二次函數(shù)的圖像性質(zhì):(1)二次函數(shù)的圖像是;(2)二次函數(shù)通過配方可得為常數(shù)),其頂點坐標(biāo)為。(3)當(dāng)時,拋物線開口,并向上無限延伸;在對稱軸左側(cè)時,y隨x的增大而減?。辉趯ΨQ軸右側(cè)
【摘要】二次函數(shù)的圖像與性質(zhì)復(fù)習(xí)考點3、二次函數(shù)的圖像與性質(zhì)基礎(chǔ)知識復(fù)習(xí)考點2,、解析式:(1)一般式:y=ax2+bx+c(a≠0);(2)頂點式:y=a(x–m)2+n,頂點為(m,n);(3)交點式:y=a(x–x1)(x-x2),與x軸兩交點是(x1,
2024-11-22 00:36
【摘要】二次函數(shù)的圖像與性質(zhì)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)?!菊f明】這里需要強(qiáng)調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)的基本形式1