【摘要】戴氏教育簇橋校區(qū)空間點(diǎn)、直線、平面的位置關(guān)系練習(xí)題授課老師:唐老師1a不平行于平面?,則下列結(jié)論成立的是(D)A.?內(nèi)所有的直線都與a異面;B.?內(nèi)不存在與a平行的直線;C.?內(nèi)所有的直線都與a相交;a與平面?有公共點(diǎn).
2024-11-24 20:05
【摘要】平面與平面的位置關(guān)系二層樓房示意圖空間中平行、相交、異面平行、相交、在平面內(nèi)復(fù)習(xí)兩個(gè)平面的位置關(guān)系————有一條公共直線——沒有公共點(diǎn);兩個(gè)平面平行1.兩個(gè)平面相交2.畫法:????//??(2)不正確畫法Ol
2025-05-12 11:26
【摘要】常用體積公式常用體積公式abcV長(zhǎng)方體=abcV正方體=a3正方體的對(duì)角線長(zhǎng)為6,它的體積為____、寬、對(duì)角線長(zhǎng)分別為5、3、7,則它的體積為_______;72,那么它的體積為________;8,那么它的表面積為_______;分別為6,8,
2024-11-17 14:50
【摘要】第二課時(shí)平面與平面垂直平面與平面垂直的判定問題提出別是什么含義?二面角的平面角有哪幾個(gè)基本特征?(1)頂點(diǎn)在棱上;(2)邊在兩個(gè)面內(nèi);(3)邊垂直于棱.,直線與平面可以垂直,平面與平面是否存在垂直關(guān)系?如何認(rèn)識(shí)兩個(gè)平面垂直?我們從理論上作些探討.知識(shí)探究(一):兩個(gè)平面垂直的概念
2024-11-17 05:39
【摘要】空間幾何元素的表示點(diǎn):用大寫英文字母表示,如:A、B、C線:用小寫字母表示,如a、b、c同樣可以用線上的兩個(gè)點(diǎn)來表示,如:AB、AC等引入:你能發(fā)現(xiàn)長(zhǎng)方體的頂點(diǎn)、棱所在的直線、以及側(cè)面、底面之間的關(guān)系嗎?ABCDA1B1C1D1α??看書:P40---P43回答下列問題:
【摘要】【考點(diǎn)整合】1.點(diǎn)、線、面的位置關(guān)系(1)公理1∵A∈α,B∈α,∴AB?α.(2)公理2∵A,B,C三點(diǎn)不共線,∴A,B,C確定一個(gè)平面.(3)公理3∵P∈α,且P∈β,∴α∩β=l,且P∈l.三個(gè)推論:①過兩條相交直線
2025-04-26 13:18
【摘要】實(shí)例:一盞電燈,可以由電線CO吊在天花板上,也可以由電線OA和繩BO拉住。CO所受的力F應(yīng)與電燈重力平衡,拉力F可以分解為AO與BO所受的拉力F1和F2。思考:從這個(gè)實(shí)例中我們看到了什么?答:一個(gè)向量可以分成兩個(gè)不同方向的向量思考:從這個(gè)實(shí)例中我們看到了什么?概括:如果是平面內(nèi)的兩個(gè)不平行的向量
2024-11-18 15:52
【摘要】二項(xiàng)式定理(簡(jiǎn)案)教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):1)理解用計(jì)數(shù)原理分析4)(ba?的展開式從而進(jìn)一步得到二項(xiàng)式定理。2)掌握并應(yīng)用二項(xiàng)式展開式、二項(xiàng)式系數(shù)、二項(xiàng)式通項(xiàng)等概念。難點(diǎn):用計(jì)數(shù)原理分析二項(xiàng)式的展開過程,發(fā)現(xiàn)二項(xiàng)式展開后各項(xiàng)系數(shù)的規(guī)律.教學(xué)過程(一)、引入加推導(dǎo)(從特殊到一般):(1)、提出問題:??
2024-12-08 10:02
【摘要】平面觀察教室里的桌面、黑板面,它們呈現(xiàn)出怎樣的形象?實(shí)例引入觀察活動(dòng)室里的地面,它呈現(xiàn)出怎樣的形象?實(shí)例引入觀察海面,它又呈現(xiàn)出怎樣的形象?實(shí)例引入生活中的一些物體通常呈平面形,課桌面、黑板面、海面都給我們以平面的形象.你還能從生活中舉出類似平面形的物體嗎?引入新課幾何里
2024-11-21 00:11
【摘要】教學(xué)目標(biāo):1、掌握平面的表示法及水平放置的直觀圖;2、會(huì)用符號(hào)表示出點(diǎn)與直線,點(diǎn)與平面,直線和平面以及平面與平面相交的位置關(guān)系;3、掌握平面的基本性質(zhì)(三個(gè)公理)及作用;4、培養(yǎng)學(xué)生的空間想象能力。實(shí)物引入、揭示課題同學(xué)們觀察長(zhǎng)方體并思考以下問題:1、長(zhǎng)方體由哪些基本元素構(gòu)成?2、觀察長(zhǎng)方體的面,
2024-11-12 01:34
【摘要】§空間中直線與平面§平面與平面之間的位置關(guān)系一、教學(xué)目標(biāo):1、知識(shí)與技能(1)了解空間中直線與平面的位置關(guān)系;(2)了解空間中平面與平面的位置關(guān)系;(3)培養(yǎng)學(xué)生的空間想象能力。2、過程與方法(1)學(xué)生通過觀察與類比加深了對(duì)這些位置關(guān)系的理解、掌握;(2)讓學(xué)
2024-11-27 21:39
【摘要】點(diǎn)共線與線共點(diǎn)我們時(shí)常遇到點(diǎn)共線和線共點(diǎn)的問題,面對(duì)這類題目若能抓住“兩面相交必有唯一交線”這一關(guān)鍵,問題就會(huì)變得清晰透徹.下面例析兩例,以供同學(xué)們參考.一、點(diǎn)共線問題證明點(diǎn)共線,常常采用以下兩種方法:①轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn),然后根據(jù)公理3證得這些點(diǎn)都在這兩個(gè)平面的交線上;②證明多點(diǎn)共線問題時(shí),通常是過其中兩點(diǎn)作一直線,然后證明
2024-12-09 03:44
【摘要】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實(shí)數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標(biāo)式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標(biāo)式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長(zhǎng)度與b
2025-04-04 05:05
【摘要】 課時(shí)作業(yè)42 空間點(diǎn)、直線、平面之間的位置關(guān)系 [基礎(chǔ)達(dá)標(biāo)] 一、選擇題 1.[2021·江西七校聯(lián)考]已知直線a和平面α,β,α∩β=l,a?α,a?β,且a在α,β內(nèi)的射影分別為直線...
2025-04-03 03:13
【摘要】.第二章平面向量一、選擇題(第1題)1.在△ABC中,AB=AC,D,E分別是AB,AC的中點(diǎn),則().A.與共線 B.與共線C.與相等 D.與相等2.下列命題正確的是().A.向量與是兩平行向量B.若a,b都是單位向量,則a=bC.若=,則A,B,C,D四點(diǎn)構(gòu)成
2025-08-05 19:24