【摘要】三角函數(shù)的最值問(wèn)題泥城中學(xué)田素偉:(1)會(huì)根據(jù)正弦和余弦函數(shù)的有界性和單調(diào)性求簡(jiǎn)單三角函數(shù)的最值和值域(2)運(yùn)用轉(zhuǎn)化,整體代換等數(shù)學(xué)思想,通過(guò)變形,換元等方法轉(zhuǎn)化為代數(shù)函數(shù)求其在給定區(qū)間內(nèi)的三角函數(shù)的最值和值域通過(guò)對(duì)最值問(wèn)題的探索和解決,提高運(yùn)算能力,增強(qiáng)分析問(wèn)題和解決問(wèn)題的能力,體現(xiàn)數(shù)學(xué)思想方法在解決三角函數(shù)的最值
2024-11-21 21:37
【摘要】數(shù)學(xué)組卷圓的最值問(wèn)題 一.選擇題(共7小題)1.(2014春?興化市月考)在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)B為y軸正半軸上的一點(diǎn),點(diǎn)C為第一象限內(nèi)一點(diǎn),且AC=2,設(shè)tan∠BOC=m,則m的取值范圍是( ?。〢.m≥0 B. C. D. 2.(2013?武漢模擬)如圖∠BAC=60°,半徑長(zhǎng)1的⊙O與∠BAC的兩邊相切,P為⊙O上一動(dòng)點(diǎn),以P為圓
2025-06-23 18:44
【摘要】中考數(shù)學(xué)幾何最值問(wèn)題解法在平面幾何的動(dòng)態(tài)問(wèn)題中,當(dāng)某幾何元素在給定條件變動(dòng)時(shí),求某幾何量(如線段的長(zhǎng)度、圖形的周長(zhǎng)或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問(wèn)題,稱為最值問(wèn)題。解決平面幾何最值問(wèn)題的常用的方法有:(1)應(yīng)用兩點(diǎn)間線段最短的公理(含應(yīng)用三角形的三邊關(guān)系)求最值;(2)應(yīng)用垂線段最短的性質(zhì)求最值;(3)應(yīng)用軸對(duì)稱的性質(zhì)求最值;(4)應(yīng)用二次函數(shù)求最值;(5)應(yīng)用其它
2025-04-04 03:00
【摘要】核心母題三最值問(wèn)題【核心母題】(1)如圖①,點(diǎn)A,B在直線l的同側(cè),確定直線上一點(diǎn)P,使PA+PB的值最小;(2)如圖②,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn),連接BD,由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱.連接ED交AC于點(diǎn)P,則PB+PE的最小值是________;(
2025-06-19 13:46
【摘要】核心母題三最值問(wèn)題【核心母題】(1)如圖①,點(diǎn)A,B在直線l的同側(cè),確定直線上一點(diǎn)P,使PA+PB的值最??;(2)如圖②,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn),連接BD,由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱.連接ED交AC于點(diǎn)P,則PB+PE的最小值是________;(
2025-06-13 16:57
【摘要】?1.判斷正誤:?(1)若函數(shù)f(x)在區(qū)間(a,b)和(c,d)上均為增函數(shù),則函數(shù)f(x)在區(qū)間(a,b)∪(c,d)上也是增函數(shù).?(2)若函數(shù)f(x)和g(x)在各自的定義域上均為增函數(shù),則f(x)+g(x)在它們定義域的交集(非空)上是增函數(shù).?[答案](1)×(
2024-11-10 12:26
【摘要】望城一中數(shù)學(xué)教研組嚴(yán)文鴛2022年12月1.教材、考綱分析2.歷年試題分析3.高考命題趨勢(shì)分析4.典型例題分析圓錐曲線背景下的最值與定值問(wèn)題圓錐曲線背景下的最值與定值問(wèn)題利用“坐標(biāo)法”來(lái)研究幾何問(wèn)題是解析幾何的基本思想。對(duì)圓錐曲線背景下的最值與定值問(wèn)題
2025-08-01 16:32
【摘要】廣東省深圳市第三高級(jí)中學(xué)數(shù)學(xué)必修一《函數(shù)的最大(?。┲怠氛n件一、問(wèn)題導(dǎo)入的,在減區(qū)間上時(shí)隨著自變量的增大而降低的,那么函數(shù)的圖象有最高點(diǎn)和最低點(diǎn)嗎?2.函數(shù)圖象上升與下降反映了函數(shù)的單調(diào)性,如果函數(shù)的圖象存在最高點(diǎn)或最低點(diǎn),它又反映了函數(shù)的什么性質(zhì)?二、探索新知——最大值觀察下列兩個(gè)函數(shù)圖象:思考1:這兩
2024-11-13 12:03
【摘要】一、函數(shù)的最大值與最小值二、經(jīng)濟(jì)應(yīng)用問(wèn)題舉例三、小結(jié)思考題第四節(jié)函數(shù)的最大值和最小值及其在經(jīng)濟(jì)中的應(yīng)用一、函數(shù)的最大值與最小值經(jīng)濟(jì)問(wèn)題中,經(jīng)常有這樣的問(wèn)題,怎樣才能使“產(chǎn)品最多”、“用料最少”、“成本最低”、“效益最高”等等.這樣的問(wèn)題在數(shù)學(xué)中有時(shí)可歸結(jié)為求某一函數(shù)(稱為目標(biāo)函數(shù))的最
2025-05-13 23:12
【摘要】圓錐曲線中的最值及范圍問(wèn)題課時(shí)考點(diǎn)14高三數(shù)學(xué)備課組考試內(nèi)容:橢圓、雙曲線、拋物線的幾何性質(zhì)及直線與圓錐曲線的位置關(guān)系.高考熱點(diǎn):解析幾何與代數(shù)方法的綜合.熱點(diǎn)題型1:重要不等式求最值新題型分類例析熱點(diǎn)題型2:利用函數(shù)求最值熱點(diǎn)題型3:利用導(dǎo)數(shù)求最值熱點(diǎn)題型4:利用判別
2024-11-06 16:44
【摘要】二次函數(shù)的復(fù)習(xí)應(yīng)用------最值問(wèn)題福州第十五中學(xué)蔡建民2020年05月22日一、復(fù)習(xí):在下列各范圍內(nèi)求函數(shù)的最值:(1)x為全體實(shí)數(shù)(2)1≤x≤2(3)-2≤x≤2322???xxyO-2
2025-09-20 15:47
【摘要】求解最值問(wèn)題的幾種思路最值問(wèn)題涉及的知識(shí)面較廣,解法靈活多變,越含著豐富的數(shù)學(xué)思想方法,對(duì)發(fā)展學(xué)生的思維,.一、利用非負(fù)數(shù)的性質(zhì)在實(shí)數(shù)范圍內(nèi),顯然有,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,即的最小值為.例1形碼設(shè)、為實(shí)數(shù),求的最小值.解析==
2025-03-25 05:12
【摘要】......第42課三角形中的最值問(wèn)題考點(diǎn)提要1.掌握三角形的概念與基本性質(zhì).2.能運(yùn)用正弦定理、余弦定理建立目標(biāo)函數(shù),解決三角形中的最值問(wèn)題.基礎(chǔ)自測(cè)1.(1)△ABC中,,則A的值為30°或90&
2025-03-24 05:43
【摘要】......橢圓中的常見(jiàn)最值問(wèn)題1、橢圓上的點(diǎn)P到二焦點(diǎn)的距離之積取得最大值的點(diǎn)是橢圓短軸的端點(diǎn),取得最小值的點(diǎn)在橢圓長(zhǎng)軸的端點(diǎn)。例1、橢圓上一點(diǎn)到它的二焦點(diǎn)的距離之積為,則取得的最大值時(shí),P點(diǎn)的坐標(biāo)是
2025-03-25 04:50
【摘要】函數(shù)的綜合問(wèn)題高三備課組一.函數(shù)綜合問(wèn)題1.函數(shù)本身內(nèi)部的綜合,包括概念、性質(zhì)及幾種基本初等函數(shù)的綜合問(wèn)題2.函數(shù)與幾何的綜合問(wèn)題3.函數(shù)與方程、不等式的綜合問(wèn)題4.函數(shù)與數(shù)列、三角的綜合問(wèn)題5.函數(shù)實(shí)際應(yīng)用的綜合問(wèn)題變式一:已知奇函數(shù)滿足的值為
2024-11-10 00:28