【摘要】課時(shí)活頁(yè)訓(xùn)練熱點(diǎn)突破探究高考動(dòng)態(tài)聚焦要點(diǎn)知識(shí)整合上頁(yè)下頁(yè)專題一集合、函數(shù)與導(dǎo)數(shù)第四講導(dǎo)數(shù)及其應(yīng)用課時(shí)活頁(yè)訓(xùn)練熱點(diǎn)突破探究高考動(dòng)態(tài)聚焦要點(diǎn)知識(shí)整合上頁(yè)下頁(yè)專題一集合、函數(shù)與導(dǎo)數(shù)要點(diǎn)知識(shí)
2024-10-17 03:45
【摘要】第一章導(dǎo)數(shù)及其應(yīng)用復(fù)習(xí)小結(jié)本章知識(shí)結(jié)構(gòu)微積分導(dǎo)數(shù)定積分導(dǎo)數(shù)概念導(dǎo)數(shù)運(yùn)算導(dǎo)數(shù)應(yīng)用函數(shù)的瞬時(shí)變化率運(yùn)動(dòng)的瞬時(shí)速度曲線的切線斜率基本初等函數(shù)求導(dǎo)導(dǎo)數(shù)的四則運(yùn)算法則簡(jiǎn)單復(fù)合函數(shù)的導(dǎo)數(shù)函數(shù)單調(diào)性研究函數(shù)的極值、最值
2025-08-05 05:54
【摘要】導(dǎo)數(shù)的概念、運(yùn)算及其幾何意義1.已知物體做自由落體運(yùn)動(dòng)的方程為若無(wú)限趨近于0時(shí),無(wú)限趨近于,那么正確的說(shuō)法是()A.是在0~1s這一段時(shí)間內(nèi)的平均速度B.是在1~(1+)s這段時(shí)間內(nèi)的速度C.是物體從1s到(1+)s這段時(shí)間內(nèi)的平均速度D.是物體在這一時(shí)刻的瞬時(shí)速度.2.已知函數(shù)f’(x)=3x2,則f
2025-04-04 05:08
【摘要】導(dǎo)數(shù)及其應(yīng)用題型一導(dǎo)數(shù)幾何意義的應(yīng)用例1已知函數(shù)在處取得極值,并且它的圖象與直線在點(diǎn)(1,0)處相切,求的值。練習(xí):已知,其中為實(shí)數(shù).若在處取得的極值為2,求的值.題型二利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性例2已知函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍。練習(xí):已知函數(shù)(1)設(shè)曲線在點(diǎn)處的切線為,若與圓相
2025-08-17 05:34
【摘要】學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)思考課題:導(dǎo)數(shù)和函數(shù)的單調(diào)性,最值班級(jí)姓名學(xué)號(hào)1、若函數(shù)y=f(x)在區(qū)間(0,2)內(nèi)的導(dǎo)數(shù)小于0,則y=f(x)()A、在(-∞,-1)內(nèi)是增函數(shù)B、在(2,+∞)內(nèi)是增函數(shù)C、在(1,2)內(nèi)是減函數(shù)D、
2025-01-07 15:19
【摘要】《導(dǎo)數(shù)及其應(yīng)用》單元測(cè)試一、選擇題:(本大題共10小題,每小題5分,共50分)1.設(shè)函數(shù)f(x)在0x處可導(dǎo),則xxfxxfx??????)()(lim000等于(C)A.)('0xfB.)('0xf?C.-)(
2025-01-07 15:20
【摘要】§偏導(dǎo)數(shù)及其經(jīng)濟(jì)應(yīng)用教學(xué)目的:理解并掌握偏導(dǎo)數(shù)概念,能正確求出所給函數(shù)的偏導(dǎo)數(shù)和高階偏導(dǎo)數(shù).了解偏導(dǎo)數(shù)的幾何意義.了解偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用.重點(diǎn):正確求出所給函數(shù)的偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù).難點(diǎn):分清常量與變量,正確運(yùn)用一元函數(shù)導(dǎo)數(shù)公式求函數(shù)的偏導(dǎo)數(shù).教學(xué)方法:?jiǎn)l(fā)式講授與指導(dǎo)練習(xí)相結(jié)合教學(xué)過(guò)程:一、偏導(dǎo)數(shù)的定義及其計(jì)算方法(全改變
2025-06-19 21:30
【摘要】課題:導(dǎo)數(shù)和函數(shù)的單調(diào)性,最值班級(jí)姓名學(xué)號(hào)1、若函數(shù)y=f(x)在區(qū)間(0,2)內(nèi)的導(dǎo)數(shù)小于0,則y=f(x)()A、在(-∞,-1)內(nèi)是增函數(shù) B、在(2,+∞)內(nèi)是增函數(shù) C、在(1,2)內(nèi)是減函數(shù) D、在(-1,3)內(nèi)是減函數(shù)2、若函數(shù)在區(qū)間(1,+∞)內(nèi)是增函數(shù),則實(shí)數(shù)a的取
2025-08-21 20:39
【摘要】導(dǎo)數(shù)的概念及應(yīng)用高三備課高考考綱透析:(理科)?(1)了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等);掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念。(2)熟記基本導(dǎo)數(shù)公式;掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則.了解復(fù)合函數(shù)的求導(dǎo)法則.會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。(3)理
2025-08-16 01:52
【摘要】導(dǎo)數(shù)---常見題型例2、已知P為拋物線y=x2上任意一點(diǎn),則當(dāng)點(diǎn)P到直線x+y+2=0的距離最小時(shí),求點(diǎn)P到拋物線準(zhǔn)線的距離。例1、(1)求過(guò)點(diǎn)(1,1)且與曲線y=相切的直線方程。(2)求過(guò)點(diǎn)(2,0)且與曲線y=相切的直線方程。一、導(dǎo)數(shù)的幾何意義:——切線的斜
2024-11-09 02:26
【摘要】山東城建職業(yè)學(xué)院工程數(shù)學(xué)電子教案第三章導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分(14學(xué)時(shí)) 內(nèi)容: 導(dǎo)數(shù)、左右導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義,導(dǎo)數(shù)的基本公式與運(yùn)算法則,反函數(shù)、復(fù)合函數(shù),初等函數(shù),隱函數(shù)的導(dǎo)數(shù),由參數(shù)方程所確定的函數(shù)的函數(shù)的導(dǎo)數(shù),簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù),隱函數(shù)的二階導(dǎo)數(shù),由參數(shù)方程所確定的函數(shù)的二階導(dǎo)數(shù)。變化率的應(yīng)用,微分概念和運(yùn)算以及微分的應(yīng)用?! ∫螅骸 ±斫鈱?dǎo)數(shù)的定義及
2025-08-22 19:33
【摘要】一、復(fù)習(xí)目標(biāo)了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號(hào)),會(huì)求一些實(shí)際問(wèn)題(一般指單峰函數(shù))的最大值和最小值.二、重點(diǎn)解析對(duì)于可導(dǎo)函數(shù)f(x),先求出f?(x),利用f?(x)0(或0)求出函數(shù)f(x)的單調(diào)區(qū)間;
2024-10-04 17:25
【摘要】1第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用2羅爾定理、拉格朗日中值定理、柯西中值定理統(tǒng)稱微分學(xué)中值定理,它們?cè)诶碚撋虾蛻?yīng)用上都有著重大意義,尤其是拉格朗日中值定理,它刻劃了函數(shù)在整個(gè)區(qū)間上的變化與導(dǎo)數(shù)概念的局部性之間的聯(lián)系,是研究函數(shù)性質(zhì)的理論依據(jù)。學(xué)習(xí)時(shí),可借助于幾何圖形來(lái)幫助理解定理的條件,結(jié)論以
2025-08-04 12:59
【摘要】第三講導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用[必記公式]1.基本初等函數(shù)的八個(gè)導(dǎo)數(shù)公式原函數(shù)導(dǎo)函數(shù)f(x)=C(C為常數(shù))f′(x)=0f(x)=xα(α∈R)f′(x)=αxα-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=ax(a0,且a≠1)
【摘要】考點(diǎn)分析:以解答題的形式考查函數(shù)的單調(diào)性和極值;近幾年高考對(duì)導(dǎo)數(shù)的考查每年都有,選擇題、填空題、解答題都出現(xiàn)過(guò),且最近兩年有加強(qiáng)的趨勢(shì)。知識(shí)點(diǎn)一:常見基本函數(shù)的導(dǎo)數(shù)公式 ?。?)(C為常數(shù)), ?。?)(n為有理數(shù)), ?。?), (4), ?。?), ?。?), ?。?),?。?),知識(shí)點(diǎn)二:函數(shù)四則運(yùn)算求導(dǎo)法則 設(shè),均可導(dǎo)?。?)和差的導(dǎo)
2025-03-25 05:12