【正文】
22232674443278666408988840910101010401011121212501112141414501213161616501314202020325033沿程水頭損失總和Σhy(3)高區(qū)給水管道水力計(jì)算高區(qū)為919層,共十一層,采用直聯(lián)無(wú)負(fù)壓供水設(shè)備供水。引入管管徑為DN50,流速v=,i=。室外給水管網(wǎng)、進(jìn)戶水表的計(jì)算與選擇室外給水管網(wǎng)布置成環(huán)狀布置,在建筑物南側(cè)布置進(jìn)戶管與市政給水管連接,進(jìn)戶管上安裝水表。=3)=+=+=室外給水管呈環(huán)狀布置,雙向供水,進(jìn)戶管2根,則管道計(jì)算流量按事故用水考慮1根進(jìn)戶管停水或雙向供水因局部故障變?yōu)閱蜗蚬┧?0%。(1)(2)選用設(shè)備設(shè) 備 型 號(hào):KDGW(1)2477(流量24,揚(yáng)程77m)水 泵:CR156臺(tái) 數(shù):2臺(tái),一用一備 功 率:無(wú)負(fù)壓緩沖罐:SQW8001950 總?cè)莘e:770L穩(wěn) 壓補(bǔ)償 器:BCQ380450 總?cè)莘e:50L智能控制系統(tǒng):二、建筑消防給水系統(tǒng)本建筑應(yīng)設(shè)有室內(nèi)、外消防給水系統(tǒng),即室外消火栓給水系統(tǒng)、室內(nèi)消火栓給水系統(tǒng)和自動(dòng)噴水滅火給水系統(tǒng)?;馂?zāi)延續(xù)時(shí)間為3h。消火栓泵2臺(tái),一用一備。水龍帶為內(nèi)襯膠,直徑65mm,長(zhǎng)度25mm.消火栓給水管網(wǎng)采用焊接鋼管,焊接連接。增壓設(shè)施設(shè)于屋頂設(shè)備房?jī)?nèi),主要由增壓泵和氣壓罐組成。消火栓布置消火栓保護(hù)半徑 R=C*Ld+Ls=*25+3=23m同一層布置的消火栓的最多個(gè)數(shù)為9個(gè)。 消火栓給水系統(tǒng)最不利管路水力計(jì)算草圖。12+=10023+=10034150452=15056+=150最不利管路沿程水頭損失總和∑0910087501011各層消火栓栓口出水壓力計(jì)算結(jié)果 樓層號(hào)上下層間消防豎管設(shè)計(jì)流量Q(L/s)上下層間消防豎管單阻i(kPa/m)上下層間消防豎管長(zhǎng)度L(m)上下層間消防豎管沿程水損(kPa)樓層消火栓栓口壓力(kPa)設(shè)備層19+10+=<50018+10+=<50017+10+=<50016+10+=<50015+10+=<50014+10+=<50013+10+=<50012+10+=<50011+10+=>50010+10+=>5009+10+=>5008+10+=>5007+10+=>5006+10+=>5005+10+=>5004+10+=>5003+10+=>5002+10+=>5001+10+=>5001+10+=>5002+10+=>500(3)消火栓泵的選擇1)設(shè)計(jì)流量==2)設(shè)計(jì)揚(yáng)程最不利管路水頭損失靜水壓==800 kPa= kPa=選用2臺(tái)XBD11/45150DL5多級(jí)立式消防泵,一用一備,水泵性能參數(shù):Q=126~200,H=108~135m,n=1450r/min,N=90KW。由于液位信號(hào)儀的液位信號(hào)轉(zhuǎn)換為水泵的啟、閉有一定的時(shí)間差,平時(shí)因管路滲漏、消防給水系統(tǒng)測(cè)試等因素而導(dǎo)致水箱內(nèi)液位降低時(shí),為確保平時(shí)消防水箱內(nèi)18的貯水容積不被動(dòng)用,將消防水箱的貯水容積定為21,即:消防水箱進(jìn)水泵的低液位啟動(dòng)、高液位關(guān)閉的自動(dòng)運(yùn)行控制,以最小貯水量為18所對(duì)應(yīng)的液位為低液位,以最大貯水量21所對(duì)應(yīng)的液位為高液位。3)增壓設(shè)施~,~,即56~,應(yīng)設(shè)增壓設(shè)施。消防貯水池和消防泵房相毗鄰。m2),作用面積160 m2 。噴淋系統(tǒng)的消防貯水池、消防水箱進(jìn)水泵,分別與室內(nèi)消火栓給水系統(tǒng)的消防貯水池、消防水箱、消防水箱進(jìn)水泵共用。濕式報(bào)警閥組,共3個(gè),設(shè)于地下室水泵房?jī)?nèi),分別控制2~1層,2~9層,10~設(shè)備層的噴頭。增壓泵2臺(tái),一用一備,設(shè)計(jì)流量1L/s。每個(gè)噴頭的噴水量作用面積內(nèi)的設(shè)計(jì)流量理論設(shè)計(jì)流量,~,符合要求。增壓設(shè)施的最小工作壓力=80++20+20+(-)10= kPa(相對(duì)壓力),則:增壓設(shè)施的最大工作壓力=(+100)/-100= kPa(相對(duì)壓力)增壓泵的設(shè)計(jì)工況電應(yīng)滿足:a、流量為1L/s時(shí), kPab、流量小于1L/s時(shí), kPa增壓泵選用兩臺(tái)40DL2多級(jí)立式泵,一用一備,水泵性能參數(shù):Q=,H= kPa ,Q=1L/s時(shí),H=,n=1450r/min,N=。三、建筑排水系統(tǒng)建筑排水系統(tǒng)分為生活排水系統(tǒng)和屋面雨水排水系統(tǒng)。系統(tǒng)的組成生活排水系統(tǒng)由衛(wèi)生器具、排水管道、檢查口、清掃口、室外排水管道、檢查井、潛水泵、集水井、化糞池等組成。(3)當(dāng)排水管在中間豎向拐彎時(shí),排水支管與排水立管;。(5)立管管徑大于或等于110mm時(shí),在樓板貫穿部位應(yīng)設(shè)置阻火圈或張度不小于500mm的防火套管。設(shè)專用通氣立管。PL4: 立管接納的排水當(dāng)量總數(shù)為=+18=立管最下部管段排水設(shè)計(jì)秒流量因有大便器,立管管徑放大一號(hào),選用de110mm,不設(shè)專用通氣立管。降雨強(qiáng)度設(shè)計(jì)重現(xiàn)期P取2年,降雨歷時(shí)t采用5min,查有關(guān)資料,有=99mm/h屋面雨水匯水面積F的劃分原則(1)屋面匯水面積應(yīng)按屋面的水平投影面積計(jì)算。(3)屋頂劃分為2個(gè)匯水區(qū),布置2個(gè)雨水斗,雨水立管分別為YLYL9。 Transient propagation NomenclatureC+ characteristic equations c wave speed, m/s D branch or stack diameter, m f friction factor, UK definition via Darcy Δh=4fLu2/2Dg g acceleration due to gravity, m/s2 K loss coefficient L pipe length, m p air pressure, N/m2 t time, s u mean air velocity, m/s x distance, mγ ratio specific heats Δh head loss, m Δp pressure difference, N/m2 Δt time step, s Δx internodal length, m ρ density, kg/m3SuffixA appliance side of trap B branch local conditions at node T trap atm atmospheric pressure F friction R room S system side of trap w waterArticle OutlineNomenclature 1. Introduction—air pressure transient control and suppression 2. Mathematical basis for the simulation of transient propagation in multistack building drainage networks 3. Role of diversity in system operation 4. Simulation of the operation of a multistack sealed building drainage and vent system 5. Simulation sign conventions 6. Water discharge to the network 7. Surcharge at base of stack 1 8. Sewer imposed transients 9. Trap seal oscillation and retention 10. Conclusion—viability of a sealed building drainage and vent system 1. Introduction—air pressure transient control and suppressionAir pressure transients generated within building drainage and vent systems as a natural consequence of system operation may be responsible for trap seal depletion and cross contamination of habitable space [1]. Traditional modes of trap seal protection, based on the Victorian engineer39。s and 3001. Boundary conditions Open end exitSet plocal=atmSolve with available C+ Eq. (4)Dead end exitSet ulocal=Solve with available C+ Eq. (4)plocalpopenSolve with Eq. (4)Trap seal exitAAV exitplocalpopenTreat as a dead end exitAir path due to trap displacementSet plocal=atm and solve with C+Depleted trapSet plocal=atm and solve with C+PAPA exitBag at line pressureVolume=, p=line pressureBag filling, p=atmSum inflow to determine bag volumeBag pressurizesUse gas Law Equation with bag volume and solve with C+ to determine bag pressureBase of stack (entry)Empirical Δp vs. QwSolve empirical relationship between back pressure, applied water flow and entrained airflow with available C Eq. (6)Sewer pressure (entry)Base of stackImpose sewer pressure and solve with C Eq. (6)Wind shear exitTop of stackImpose variable atmospheric pressure and solve with C+ Eq. (4)The case of the appliance trap seal is of particular importance. The trap seal water column oscillates under the action of the applied pressure differential between the transients in the network and the room air pressure. The equation of motion for the Ubend trap seal water column may be written at any time as(9)It should be recognized that while the water colu