【摘要】高一數(shù)學導學案編制人:審核人:必修4第二章第1課時向量概念及物理意義【學習目標】,理解向量的概念.2.理解零向量、單位向量、共線向量、相等向量等概念?!窘虒W重點】向量、零向量、單位向量、平行向量的概念.【教學難點】向量及相關概念的理解,零向量、單位向量、平行向量的判斷【教材
2025-04-17 12:24
【摘要】向量共線的條件和軸上向量的坐標運算一般地,實數(shù)λ與向量a的積是一個向量,這種運算叫做向量的數(shù)乘運算,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當λ0時,λa的方向與a方向相同;當λ0時,λa的方向與a方向相反;特別地,當
2025-11-02 21:10
【摘要】2020/12/181§空間中兩點的距離公式X(1)在空間直角坐標系中,任意一點P(x,y,z)到原點的距離:222||zyxOP???P`(x,y,0)zxyOP(x,y,z),222RtPOPOPOPPP?????在中222xyz?
2025-11-02 21:09
【摘要】空間兩點間的距離公式問題提出1.在平面直角坐標系中兩點間的距離公式是什么?2.在空間直角坐標系中,若已知兩個點的坐標,則這兩點之間的距離是惟一確定的,我們希望有一個求兩點間距離的計算公式,對此,我們從理論上進行探究.知識探究(一):與坐標原點的距離公式思考1:在空間直角坐標系中,坐標軸上的點A(
2025-11-02 08:58
【摘要】平面上兩點間的距離一、復習引入:試求:P1,P2兩點間的距離已知:P1(x1,y1)和P2(x2,y2),xoy1)、y1=y21x2x2)、x1=x2xoy1y2y1221||PPxx??1221||PPyy????111yxP,??222yxP,??
【摘要】空間向量與立體幾何典型例題一、選擇題:1.(2022全國Ⅰ卷理)已知三棱柱111ABCABC?的側(cè)棱與底面邊長都相等,1A在底面ABC內(nèi)的射影為ABC△的中心,則1AB與底面ABC所成角的正弦值等于(C)A.13B.23C.33D.23:C.由題意知三棱錐1AABC?為正四
2025-12-31 10:12
【摘要】第二章平面向量向量的物理背景與概念向量的幾何表示問題提出t57301p2???????,位移與距離是同一個概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數(shù)學上,為了正確理解、區(qū)分這些量,我們引進向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
【摘要】2020年12月18日星期五---角的向量計算方法如圖,在正方體中,,求與所成的角的余弦值.1111?ABCDABCD11?BE111114???ABDF1BE1DFF1E1C1B1A1D1DABCxyz
【摘要】第1節(jié)平面向量的概念及線性運算(對應學生用書第59~60頁)1.向量的有關概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的長度(或稱模).(2)零向量:長度為0的向量叫做零向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同
2025-11-02 09:01
【摘要】第2節(jié)平面向量基本定理及其坐標表示(對應學生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2025-11-03 01:35
【摘要】1、平面向量的坐標表示與平面向量分解定理的關系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
【摘要】2020年12月17日星期四---角的向量計算方法如圖,在正方體中,,求與所成的角的余弦值.1111?ABCDABCD11?BE111114???ABDF1BE1DFF1E1C1B1A1D1DABCxyz
2025-11-01 08:30
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2025-11-01 08:35
2025-11-01 00:48
【摘要】第二節(jié)平面向量基本定理及坐標表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解