freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

第二章n維向量-預(yù)覽頁

2025-08-13 18:47 上一頁面

下一頁面
 

【正文】 00101011021111??A??????????????????20220100101011021111? ??????????????????40000001001011021111?,43)(4 ???? Ar時(shí),? 線性相關(guān)。 nmA ?推論 3:任意 n 個(gè) n 維向量線性無關(guān)的充要條件是由它們 構(gòu) 成的方陣 A的行列式不等于零。 推論 : r 維線性無關(guān)的向量,添加 nr 個(gè)相應(yīng)分量組成的 n 維向量仍舊線性無關(guān)。r???? , 21 ?則稱 Tr 是向量組??? , 21 ? 的一個(gè)極大線性 無關(guān)組,簡稱極大無關(guān)組。 ,但它們之間是 等價(jià)的 . 例 :求向量組的極大無關(guān)組 . )1,1,4(),1,3,2(),1,2,1( 321 ?????? ????????????????????????????114132121321???A??????????????370370121?????????????00037012132)( ??? Ar 線性相關(guān)。 定理 2: 一個(gè)向量組的 任意兩個(gè)極大無關(guān)組所含向量的個(gè)數(shù)相 等。 必須注意:有相同秩的兩個(gè)向量組不一定等價(jià)。 行秩: 矩陣行向量組的秩; 列秩: 矩陣列向量組的秩。 )0,2,2,1(),14,7,0,3(),2,1,3,0(),4,2,1,1( 4321 ?????? ????解: ????????????????????????????????022114703213042114321????A??????????????????4010213021304211??????????????????4010213021304211??????????????????2130213040104211???????????????????000010100401042113)(),( 4321 ??? Arr ?????? ),( 4321 ????A????????????????01424271220311301?????????????????4220011013301301?????????????????4220133001101301?????????????????4000100001101301????????????????0000100001101301極大無關(guān)組的求法 列擺行變換法。) 列擺行變換將矩陣化為梯形陣后,秩即求出來了。 ,43)(4 ???? Ar時(shí),? 線性相關(guān)。一個(gè)最典型的例子是: ? ?)(),(m i n)( BrArBAr nssm ???這是一個(gè)非常 重要的關(guān)于秩 的不等式! 設(shè)有 n兩個(gè)維向量組 與s??? , 21 ? , 21 s??? ?若 ???????????????s????21????????????????????????????sssssssaaaaaaaaa???????????21212222111211???????????????ssssssaaaaaaaaaK???????212222111211sKrs ?? )(, 21 線性無關(guān)則 ??? ?這又是一個(gè)非常有用的公
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1