freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

圖像處理中的邊緣提取算法及實現(xiàn)-預(yù)覽頁

2025-07-20 14:17 上一頁面

下一頁面
 

【正文】 、信號檢測、金融建模設(shè)計與分析等領(lǐng)域。圖像變換:通過圖像的變換,改變圖像的表示域以及表示數(shù)據(jù)。圖像分析:為了更好的研究與分析圖像,往往需要從圖像中提取一些信息來反應(yīng)圖像的主要特征。 本章小結(jié)本章先說明了為什么選擇Matlab作為本課題的開發(fā)平臺,簡要的介紹了Matlab軟件的特點及其功能,下一章將從數(shù)學(xué)的角度介紹常用的邊緣檢測算子的實現(xiàn)原理。圖像邊緣檢測和計算機視覺都是新興學(xué)科分支,近幾十年來,取得了許多重大的成果。利用計算機進(jìn)行圖像邊緣檢測有兩個目的:一是產(chǎn)生更適合人觀察和識別的圖像;二是希望能由計算機自動識別和理解圖像。邊緣廣泛存在于物體與背景之間、物體與物體之間、基元與基元之間,因此,它是圖像分割所依賴的重要特征。圖像的邊緣是待識別類型之間的界線,它是指圖像中像素單元灰度有階躍變化或屋頂狀變化的那些像素單元的集合[6]。邊緣提取首先檢出圖像局部特性的不連續(xù)性,然后再將這些不連續(xù)的邊緣像素連成完備的邊界。圖像上灰度變化劇烈的區(qū)域比較符合這個要求,我們一般會以這個特征來提取圖像的邊緣,但在遇到包含紋理的圖像上,如,圖像中的人穿了黑白格子的衣服,我們往往不希望提取出來的邊緣包括衣服上的方格,這就又涉及到紋理圖像的處理等方法。圖像邊緣檢測的基本步驟:1)濾波:邊緣檢測主要基于導(dǎo)數(shù)計算,會受到噪聲的影響,可以通過設(shè)計濾波器來降低噪聲,但濾波器在降低噪聲的同時也會導(dǎo)致邊緣精度的損失。最簡單的邊緣檢測是梯度幅值閾值判定。經(jīng)典的邊緣檢測算子包括:Roberts算子、Prewitt算子、Sobel算子、Log算子、Canny算子等[7],這些經(jīng)典的邊緣提取算子在使用時都是使用預(yù)定義的邊緣模型去匹配。 Roberts邊緣算子Roberts算子是一種利用局部差分算子尋找邊緣的算子,由下式給出:g(x,y)={[]+[ ]} 其中f(x,y)是具有整數(shù)像素坐標(biāo)的輸入圖像,平方根運算使該處理類似于在人類視覺系統(tǒng)中發(fā)生的過程。該算子對噪聲具有一定的抑制能力,但不能完全排除檢測結(jié)果中出現(xiàn)虛假邊緣,雖然該算子的定位效果不錯,但檢測的邊緣容易出現(xiàn)多像素寬度。將圖像與進(jìn)行卷積,可以得到一個平滑的圖像,即:(2)增強:對平滑圖像進(jìn)行拉普拉斯運算,即:(3)檢測:邊緣檢測判據(jù)是二階導(dǎo)數(shù)的零交叉點(即 的點)并對應(yīng)一階導(dǎo)數(shù)的較大峰值。在實際應(yīng)用中為了避免檢測出非顯著邊緣,應(yīng)選擇一階導(dǎo)數(shù)大于某一閾值的零交叉點作為邊緣點。高斯拉普拉斯算子把高斯平滑濾波器和拉普拉斯銳化濾波器結(jié)合起來,先平滑掉噪聲,再進(jìn)行邊緣檢測,所以效果更好。Canny邊緣檢測算法:step1:用高斯濾波器平滑圖象;step2:用一階偏導(dǎo)的有限差分來計算梯度的幅值和方向;step3:對梯度幅值進(jìn)行非極大值抑制;step4:用雙閾值算法檢測和連接邊緣。step3:僅僅得到全局的梯度并不足以確定邊緣,因此為確定邊緣,必須保留局部梯度最大的點,而抑制非極大值。如果M的梯度值不比沿梯度線的兩個相鄰像素梯度值大,則令M=0。解決方法:雙閾值算法進(jìn)行邊緣判別和連接邊緣。雙閾值法要在G2(x,y)中把邊緣連接成輪廓,當(dāng)?shù)竭_(dá)輪廓的端點時,該算法就在G1(x,y)的8鄰點位置尋找可以連接到輪廓上的邊緣,這樣,算法不斷地在G1(x,y)中收集邊緣,直到將G1(x,y)連接起來為止。 第四章 常用算法的實現(xiàn)與比較近年來,圖像分析和處理緊緊圍繞理論、實現(xiàn)、應(yīng)用三方面迅速發(fā)展起來。edge函數(shù)的語法格式:BW = edge(I , ‘sobel’)BW = edge(I , ‘sobel’ , thresh)BW = edge(I , ‘sobel’ , ‘thresh’ , direction)[BW , thresh] = edge(I , ‘sobel’ ,…)BW = edge(I , ‘prewitt’)BW = edge(I , ‘prewitt’ , thresh)BW = edge(I , ‘prewitt’ , ‘thresh’ , direction)[BW , thresh] = edge(I , ‘prewitt’ ,…)BW = edge(I , ‘roberts’)BW = edge(I , ‘roberts’ , thresh)BW = edge(I , ‘roberts , ‘thresh’ , direction)[BW , thresh] = edge(I , ‘roberts’ ,…)BW = edge(I , ‘log’)BW = edge(I , ‘log’ , thresh)BW = edge(I , ‘log’ , ‘thresh’ ,sigma)[BW , threshold] = edge(I , ‘log’ ,…)BW = edge(I , ‘zerocross’ , thresh , h)[BW , thresh] = edge(I , ‘zerocross’ ,…)BW = edge(I , ‘canny’)BW = edge(I , ‘canny’ , thresh)BW = edge(I , ‘canny’ , ‘thresh’ ,sigma)[BW , threshshold] = edge(I , ‘canny’ ,…)下面我們將使用上述的邊緣檢測算法實現(xiàn)以下檢測算子:a) Prewitt。D:\SYSTEM\桌面\新建文件夾\39。 %轉(zhuǎn)換為雙精度,便于后面的計算figure, imshow(f),title(39。prewitt39。)。 %邊緣探測,算子為robertsfigure, imshow(RF),title(39。log39。)。 %邊緣探測,算子為cannyfigure, imshow(CF),title(39。sobel39。)。D:\SYSTEM\桌面\新建文件夾\39。 %轉(zhuǎn)換為雙精度,便于后面的計算subplot(231), imshow(f), title(39。prewitt39。)。 %邊緣探測,算子為robertssubplot(233), imshow(RF), title(39。log39。)。 %邊緣探測,算子為cannysubplot(235), imshow(CF), title(39。sobel39。)。下面介紹下各算子的穩(wěn)定性。為了能夠更好地看出這些算子的穩(wěn)定性,特將未加入噪聲的圖片的邊緣處理和加入噪聲的邊緣處理圖片放在一個界面上。 %讀入圖像p = imnoise(f,39。%f = rgb2gray(f)。Original Filter39。 %轉(zhuǎn)換為雙精度,便于后面的計算subplot(1,2,2) , imshow(p)。 %設(shè)置圖像標(biāo)題運行后便得到48:圖 48 原圖與加入椒鹽噪聲后的圖像f = imread(39。salt amp。 %將彩色圖像轉(zhuǎn)換為灰度圖像f = im2double(f)。 %邊緣探測,算子為prewittsubplot(1,2,1) , imshow(PP)。 %設(shè)置圖像標(biāo)題p = rgb2gray(p)。)。)。保存并運行即可得到圖412:圖 412 Log算子邊緣檢測原圖與加噪圖將上述程序中的PP=edge(f,’prewitt’)改為PP=edge(f,’canny’),并將標(biāo)題做相應(yīng)的調(diào)整即可實現(xiàn)Canny算子。第五章 圖像邊緣提取的GUI設(shè)計圖形用戶界面(Graphical User Interfaces , GUI)是指由窗口、光標(biāo)、按鍵、菜單、文字說明等對象(Objects)構(gòu)成的一個用戶界面[8]。在界面編程中,打開對話框的函數(shù)是uigetfile。以上是打開與保存函數(shù)的簡介,下一節(jié)介紹GUI界面的形成。(3)enable屬性:該控件有效與否:”on“表示有效,”off“表示無效。(7)Units取值可以是pixels (缺省值), normalized(相對單位), inches, centimeters或points(磅);經(jīng)修改后的結(jié)果為如圖55所示:圖55 GUI設(shè)計完善界面。39。39。},39。endstr=[pathname filename]。setappdata(,39。代碼添加完成后,保存并運行程序,點擊“打開圖像”按鈕,結(jié)果如圖57所示:圖 57 點擊“打開圖像”后的圖形界面找到合適的路徑,并選擇一幅合適的圖像文件,點擊“打開”,就打開了一幅圖像,效果如圖58所示:圖 58 打開圖像文件在“保存圖像”控件的回調(diào)函數(shù)下面添加如下代碼:[filename,pathname]=... uiputfile({39。39。},39。 im=getimage()。版權(quán)所有,翻版不究**平院張大威39。)“關(guān)于軟件”的運行結(jié)果如圖59所示:圖 59 點擊“關(guān)于軟件”后的界面選擇“控件組”,右鍵單擊,選擇“ViewCallbacks”—“SelectionChangeF”,打開“.m”文件中找到“function uipanel1_SelectionChangeF(hObject, eventdata, handles)”并在其下添加如下代碼:global BW im=getappdata(,39。string39。Initial39。 BW=edge(im,39。 case39。)。 BW=edge(im,39。case39。)。 BW=edge(im,39。 end。)。 axes()。)。 axes()。roberts39。采用同Roberts的回調(diào)函數(shù)一樣的添加方法和格式,把BW=edge(rgb,39。圖 59 測試結(jié)果圖 本章小結(jié)本章詳細(xì)介紹了對各種所研究的邊緣檢測算子進(jìn)行的圖形用戶界面(GUI)設(shè)計的步驟,并用GUI實現(xiàn)了打開圖片、保存圖片等功能?!?、“.png”格式文件,默認(rèn)打開的格式是“bmp”,選擇其他格式時需手動選擇,也可以選擇“All Files(*.*)”,當(dāng)打開其他格式的圖像文件或非圖像文件時,軟件將停留在原來界面不進(jìn)行任何操作,Matlab平臺軟件將會報錯。 執(zhí)行模塊測試在執(zhí)行模塊測試這塊,為了看到用不同的算子執(zhí)行的結(jié)果以及執(zhí)行效果的區(qū)別,分別執(zhí)行不同的算子并保存,將處理后的幾張圖片整合到一起,對比處理效果,結(jié)果如圖61所示: 圖61 執(zhí)行模塊結(jié)果對比圖 本章小結(jié)在代碼編寫及圖形界面的設(shè)計過程中,即使經(jīng)過反復(fù)的檢查也難免出錯。對此,我打算在以后繼續(xù)努力學(xué)習(xí),爭取實現(xiàn)目前未能實現(xiàn)的功能,努力完善系統(tǒng),提高系統(tǒng)的穩(wěn)定性和可用性。還要感謝我的父母,他們在生活上給予我很大的支持和鼓勵,是他們給予我努力學(xué)習(xí)的信心和力量
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1