【摘要】“時(shí)間是個(gè)常數(shù),但對(duì)勤奮者來說,是個(gè)‘變數(shù)’。用‘分’來計(jì)算時(shí)間的人比用‘小時(shí)’來計(jì)算時(shí)間的人時(shí)間多59倍?!?---雷巴柯夫y是x的一次函數(shù),請(qǐng)你添加條件___________________,則此函數(shù)的表達(dá)式為_________.已知一次函數(shù)y=kx+b圖象上兩點(diǎn)的坐標(biāo),
2024-11-17 08:35
【摘要】◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆典例導(dǎo)學(xué)◆反饋演練(◎第一階
2025-06-12 06:48
2025-06-12 06:51
【摘要】確定二次函數(shù)的表達(dá)式一、選擇題:1.已知拋物線過A(-1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),且BC=32,則這條拋物線的解析式為()A.y=-x2+2x+3B.y=x2-2x-3C.y=x2+2x―3或y=-x2+2x+3D.y=-
2024-11-28 17:51
【摘要】第26章二次函數(shù)3.求二次函數(shù)的表達(dá)式知識(shí)管理學(xué)習(xí)指南歸類探究當(dāng)堂測(cè)評(píng)分層作業(yè)學(xué)習(xí)指南★教學(xué)目標(biāo)★1.讓學(xué)生利用已知條件設(shè)恰當(dāng)?shù)暮瘮?shù)解析式,用待定系數(shù)法求二次函數(shù)的解析式;2.指導(dǎo)學(xué)生利用二次函數(shù)的解析式和性質(zhì)
2025-06-20 00:38
【摘要】確定二次函數(shù)的表達(dá)式學(xué)習(xí)目標(biāo):1、會(huì)利用待定系數(shù)法求二次函數(shù),并能正確的求出函數(shù)關(guān)系式。2、能選擇合理簡(jiǎn)便的方法求函數(shù)關(guān)系式。學(xué)習(xí)重點(diǎn):能選擇合理簡(jiǎn)便的方法求函數(shù)關(guān)系式。學(xué)習(xí)難點(diǎn):正確的求出函數(shù)關(guān)系式。學(xué)習(xí)導(dǎo)航能根據(jù)題目所提供的條件靈活選用二次函數(shù)表達(dá)式的類型,體會(huì)待定系數(shù)法的思想,經(jīng)常不能準(zhǔn)確的求出函數(shù)的表達(dá)式,是運(yùn)算能力
2024-11-28 13:10
【摘要】課前準(zhǔn)備:請(qǐng)準(zhǔn)備好:課本、導(dǎo)學(xué)案(二次函數(shù)的最值)、練習(xí)本,雙色筆,更重要的是你的激情!準(zhǔn)備好后閱讀教材p22-23讀一讀,了解什么是待定系數(shù)法及其步驟今日贈(zèng)言:激情投入,積極思考,為中考而戰(zhàn)小組導(dǎo)學(xué)案預(yù)習(xí)得分情況一組二組三組四組五組六組A(3)B(2)C(1)D(0)
2025-06-20 18:45
【摘要】第二章二次函數(shù)確定二次函數(shù)的表達(dá)式(第1課時(shí))??y=ax2+bx+c(a,b,c為常數(shù),a≠0)y=a(x-h)2+k(a≠0)復(fù)習(xí)引入1y=kx+b(k,b為常數(shù),k≠0)的關(guān)系式時(shí),通常需要個(gè)獨(dú)立的條件.確定反比例函數(shù)(k≠0)關(guān)系式
2024-11-30 14:40
【摘要】確立二次函數(shù)表達(dá)式【教學(xué)內(nèi)容】確立二次函數(shù)表達(dá)式(二)【教學(xué)目標(biāo)】知識(shí)與技能學(xué)會(huì)運(yùn)用待定系數(shù)法求二次函數(shù)表達(dá)式,熟練應(yīng)用已知圖象上三個(gè)點(diǎn)能確定二次函數(shù)解析式。過程與方法經(jīng)歷二次函數(shù)表達(dá)式確定的又一基本方法,對(duì)待定系數(shù)法求函數(shù)解析式有更深入的了解。情感、態(tài)度與價(jià)值觀在確立二次函數(shù)表達(dá)式過程式中體驗(yàn)學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
2024-11-19 15:45
【摘要】第二章二次函數(shù)確定二次函數(shù)的表達(dá)式(第2課時(shí))引入課題1、一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù),叫做二次函數(shù),所以,我們把________________叫做二次函數(shù)的一般式。2、二次函數(shù)y=ax2+bx+c,用配方法可化成:y=a(x-h)2+k,頂點(diǎn)是(h,
2024-11-24 21:10
【摘要】不共線三點(diǎn)確定二次函數(shù)的表達(dá)式第1章二次函數(shù)不共線三點(diǎn)確定二次函數(shù)的表達(dá)式知識(shí)目標(biāo)目標(biāo)突破第1章二次函數(shù)總結(jié)反思知識(shí)目標(biāo)1.通過回顧用待定系數(shù)法求一次函數(shù)的表達(dá)式,能根據(jù)不共線的三點(diǎn)確定二次函數(shù)的表達(dá)式.2.審清題意,能根據(jù)題意選擇適當(dāng)?shù)?/span>
2025-06-17 22:38
【摘要】5二次函數(shù)與一元二次方程,體會(huì)方程與函數(shù)之間的聯(lián)系.x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)數(shù)根、兩個(gè)相等的實(shí)數(shù)根和沒有實(shí)數(shù)根.x軸交點(diǎn)的橫坐標(biāo).ax2+bx+c=0的求根公式是什么?當(dāng)b2-4ac≥0時(shí),當(dāng)b2-4ac0時(shí),方程無實(shí)數(shù)根.aacbbx2
2025-06-15 02:55
【摘要】第二章二次函數(shù)知識(shí)點(diǎn)1二次函數(shù)與一元二次方程的關(guān)系1.(陜西中考)下列關(guān)于二次函數(shù)y=ax2-2ax+1(a1)的圖象與x軸交點(diǎn)的判斷,正確的是(D),且它位于y軸右側(cè),且它們均位于y軸左側(cè),且它們均位于y軸右側(cè)2.(孝感中考)如圖,拋物線y=ax2與直線y=b
2025-06-18 00:42
【摘要】5二次函數(shù)與一元二次方程【基礎(chǔ)梳理】y=ax2+bx+c(a≠0)與一元二次方程ax2+bx+c=0(a≠0)的關(guān)系拋物線y=ax2+bx+c與x軸的交點(diǎn)的個(gè)數(shù)一元二次方程ax2+bx+c=0(a≠0)的根的情況2_______________1_______________0_______
2025-06-12 12:32
2025-06-21 02:27