【摘要】......學(xué)習(xí)參考 橢 圓典例精析題型一 求橢圓的標(biāo)準(zhǔn)方程【例1】已知點P在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P
2025-04-17 13:13
【摘要】......:?(1)第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時,軌跡是線段FF,當(dāng)常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕
2025-06-19 02:06
【摘要】WORD資料可編輯經(jīng)典例題精析類型一:求曲線的標(biāo)準(zhǔn)方程 1.求中心在原點,一個焦點為且被直線截得的弦AB的中點橫坐標(biāo)為的橢圓標(biāo)準(zhǔn)方程. 思路點撥:先確定橢圓標(biāo)準(zhǔn)方程的焦點的位置(定位),選擇相應(yīng)的標(biāo)準(zhǔn)方程,再利用待定系數(shù)法確定、(定量). 解析:
2025-06-22 16:01
【摘要】經(jīng)典例題精析類型一:求曲線的標(biāo)準(zhǔn)方程 1.求中心在原點,一個焦點為且被直線截得的弦AB的中點橫坐標(biāo)為的橢圓標(biāo)準(zhǔn)方程. 思路點撥:先確定橢圓標(biāo)準(zhǔn)方程的焦點的位置(定位),選擇相應(yīng)的標(biāo)準(zhǔn)方程,再利用待定系數(shù)法確定、(定量). 解析: 方法一:因為有焦點為, 所以設(shè)橢圓方程為,, 由,消去得, 所以 解得
【摘要】考點41直線與圓錐曲線的位置關(guān)系一、直線與圓錐曲線的位置關(guān)系1.曲線的交點在平面直角坐標(biāo)系xOy中,給定兩條曲線,已知它們的方程為,求曲線的交點坐標(biāo),即求方程組的實數(shù)解.方程組有幾組實數(shù)解,,則這兩條曲線沒有交點.2.直線與圓錐曲線的交點個數(shù)的判定設(shè)直線,圓錐曲線,把二者方程聯(lián)立得到方程組,消去得到一個關(guān)于的方程.(1)當(dāng)時,方程有兩個不同的實數(shù)解,即直線與圓
2025-07-25 06:38
【摘要】1 橢 圓典例精析題型一 求橢圓的標(biāo)準(zhǔn)方程【例1】已知點P在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P作長軸的垂線恰好過橢圓的一個焦點,求橢圓的方程.253【解析】故所求方程為+=1或+=1.x253y2103x210y25【點撥】(1)在求橢圓的標(biāo)準(zhǔn)方程
2025-04-17 12:54
【摘要】圓錐曲線:第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時,軌跡是線段FF,當(dāng)常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點
2025-03-25 00:04
【摘要】(二)雙曲線知識點及鞏固復(fù)習(xí)如果平面內(nèi)一個動點到兩定點距離之差的絕對值等于正的常數(shù)(小于兩定點間的距離),那么動點的軌跡是雙曲線若一個動點到兩定點距離之差等于一個常數(shù),常數(shù)的絕對值小于兩定點間的距離,那么動點的軌跡是雙曲線的一支F1,F(xiàn)2為兩定點,P為一動點,(1)若||PF1|-|PF2||=2a①02a|F1F2|則動點P的軌跡是
2025-07-22 22:38
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-25 00:15
【摘要】高中數(shù)學(xué)圓錐曲線基本知識與典型例題第一部分:橢圓1.橢圓的概念在平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓.這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a0,c0,且a,c為常數(shù):(1)若ac,則集合P為橢圓;(2)
2025-04-04 05:07
【摘要】解析幾何專題·經(jīng)典結(jié)論收集整理:宋氏資料2016-1-1有關(guān)解析幾何的經(jīng)典神級結(jié)論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.以焦點弦為直徑的圓必與對應(yīng)準(zhǔn)線相離.(第二定義)4.以焦點半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54
【摘要】1、直線和圓錐曲線位置關(guān)系(1)位置關(guān)系判斷:△法(△適用對象是二次方程,二次項系數(shù)不為0)。其中直線和曲線只有一個公共點,包括直線和雙曲線相切及直線與雙曲線漸近線平行兩種情形;后一種情形下,消元后關(guān)于x或y方程的二次項系數(shù)為0。直線和拋物線只有一個公共點包括直線和拋物線相切及直線與拋物線對稱軸平行等兩種情況;后一種情形下,消元后關(guān)于x或y方程的二次項系數(shù)為0。(2)直線和
2025-07-22 17:02
【摘要】......有關(guān)解析幾何的經(jīng)典結(jié)論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.
【摘要】橢圓必背的經(jīng)典結(jié)論1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩
2025-06-24 04:00
【摘要】曲線方程及圓錐曲線典型例題解析一.知識要點1.曲線方程(1)求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說明1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動點坐標(biāo)。建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點M的坐標(biāo)。(1)所研究的問題已給出坐標(biāo)系,即可直接設(shè)點。(2)沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系。2、現(xiàn)
2025-07-26 09:19