【摘要】智能算法及其在數(shù)學(xué)建模中的應(yīng)用計(jì)算智能簡(jiǎn)介人工神經(jīng)網(wǎng)絡(luò)及應(yīng)用支持向量機(jī)及應(yīng)用模糊集及應(yīng)用遺傳算法及應(yīng)用單元一智能算法簡(jiǎn)介?智能的層次生物智能(BI)符號(hào)智能(SI)計(jì)算智能(CI)人工智能(AI)?最高層次的智能是生物智能(BiologicalIntelligen
2025-01-05 03:14
【摘要】人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用第4講BP神經(jīng)網(wǎng)絡(luò)何建華電信系,華中科技大學(xué)2022年2月28日2022/2/12一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計(jì)四、改進(jìn)BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排2022/2/13一、內(nèi)容回顧
2025-01-08 01:10
【摘要】人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用第4講BP神經(jīng)網(wǎng)絡(luò)何建華電信系,華中科技大學(xué)2020年2月28日2020/11/232一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計(jì)四、改進(jìn)BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排2020/11/233一、內(nèi)容回顧
2024-10-17 20:05
【摘要】武漢科技大學(xué)1張凱副教授武漢科技大學(xué)計(jì)算機(jī)學(xué)院人工神經(jīng)網(wǎng)絡(luò)(ArtificalNeuralNetwork)2第一章神經(jīng)網(wǎng)絡(luò)概述1.人工智能與神經(jīng)網(wǎng)絡(luò)2.人工神經(jīng)網(wǎng)絡(luò)的基本概念3.人工神經(jīng)網(wǎng)絡(luò)研究的歷史4.人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用領(lǐng)域人工智能?人工智能(Ar
2025-05-26 02:15
【摘要】第十一章人工神經(jīng)網(wǎng)絡(luò)建模(ArtificialNeuronNets)?一、引例?1981年生物學(xué)家格若根(W.Grogan)和維什(W.Wirth)發(fā)現(xiàn)了兩類蚊子(或飛蠓midges).他們測(cè)量了這兩類蚊子每個(gè)個(gè)體的翼長(zhǎng)和觸角長(zhǎng),數(shù)據(jù)如下:?翼長(zhǎng)觸角長(zhǎng)類別?
2025-01-04 04:53
【摘要】INSTITUTEOFCOMPUTINGTECHNOLOGY2022/2/21神經(jīng)信息學(xué)脈沖耦合神經(jīng)網(wǎng)絡(luò)史忠植中科院計(jì)算所INSTITUTEOFCOMPUTINGTECHNOLOGY2022/2/22脈沖耦合神經(jīng)網(wǎng)絡(luò)隨著生物神
2025-01-08 06:15
【摘要】第5章單片機(jī)的定時(shí)/計(jì)數(shù)器與串行接口智能控制技術(shù)西安工業(yè)大學(xué)電信學(xué)院宋曉茹第5章單片機(jī)的定時(shí)/計(jì)數(shù)器與串行接口反饋神經(jīng)網(wǎng)絡(luò)模型——Hopfield網(wǎng)絡(luò)第5章單片機(jī)的定時(shí)/計(jì)數(shù)器與串行接口Hopfield網(wǎng)絡(luò)屬于
2025-01-04 16:17
【摘要】機(jī)器學(xué)習(xí)人工神經(jīng)網(wǎng)絡(luò)(ANN)概述?人工神經(jīng)網(wǎng)絡(luò)提供了一種普遍且實(shí)用的方法從樣例中學(xué)習(xí)值為實(shí)數(shù)、離散值或向量的函數(shù)?反向傳播算法,使用梯度下降來調(diào)節(jié)網(wǎng)絡(luò)參數(shù)以最佳擬合由輸入-輸出對(duì)組成的訓(xùn)練集合?人工神經(jīng)網(wǎng)絡(luò)對(duì)于訓(xùn)練數(shù)據(jù)中的錯(cuò)誤健壯性很好?人工神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用到很多領(lǐng)域,例如視覺場(chǎng)景分析,語音識(shí)別,機(jī)器人控制簡(jiǎn)
2024-10-18 23:31
【摘要】人工神經(jīng)網(wǎng)絡(luò) ArtificialNeural Networks 第一頁(yè),共七十九頁(yè)。 概述 什么是人工神經(jīng)網(wǎng)絡(luò) 人工神經(jīng)網(wǎng)絡(luò):是一種應(yīng)用類似于大腦神 經(jīng)突觸聯(lián)接的結(jié)構(gòu)進(jìn)行信息處理的...
2024-10-03 10:50
【摘要】人工神經(jīng)網(wǎng)絡(luò)方法——原理及應(yīng)用張倩倩、孫晶人工神經(jīng)網(wǎng)絡(luò)方法?人工神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介?應(yīng)用實(shí)例——長(zhǎng)江三角洲地區(qū)城市體系的職能分類?人工神經(jīng)網(wǎng)絡(luò),是一個(gè)具有高度非線性的超大規(guī)模連續(xù)時(shí)間動(dòng)力系統(tǒng),是由大量的處理單元(神經(jīng)元)廣泛互連而形成的網(wǎng)絡(luò)。是人
2025-01-05 22:58
【摘要】ArtificialIntelligencePrinciplesandApplications第8章人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用教材:王萬良《人工智能及其應(yīng)用》(第2版)高等教育出版社,2022.62第8章人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用神經(jīng)網(wǎng)絡(luò)(neuralworks,NN)
2025-01-05 23:19
【摘要】121反向傳播算法的變形122BP算法的缺點(diǎn)?算法的收斂速度很慢?可能有多個(gè)局部極小點(diǎn)?BP網(wǎng)絡(luò)的隱層神經(jīng)元個(gè)數(shù)的選取尚無理論上的指導(dǎo),而是根據(jù)經(jīng)驗(yàn)選取?BP網(wǎng)絡(luò)是一個(gè)前向網(wǎng)絡(luò),具有非線性映射能力,但較之非線性動(dòng)力學(xué)系統(tǒng),功能上有其局限性123BP算法的變形?啟發(fā)式改進(jìn)–動(dòng)量
【摘要】神經(jīng)網(wǎng)絡(luò)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)發(fā)展萌芽期?閥值加權(quán)和模型(MP模型)?Hebb學(xué)習(xí)律上世紀(jì)四十年代第一次高潮期?電子線路模擬感知器?大規(guī)模投入研究上世紀(jì)五六十年代沉寂期?異或運(yùn)算不可表示?多層感知器學(xué)習(xí)規(guī)則不知上世紀(jì)八十年代初復(fù)興期?Hopfield網(wǎng)絡(luò)?
2025-01-08 05:24
【摘要】BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法概述?Rumelhart,McClelland于1985年提出了BP網(wǎng)絡(luò)的誤差反向后傳BP(BackPropagation)學(xué)習(xí)算法?BP算法基本原理?利用輸出后的誤差來估計(jì)輸出層的直接前導(dǎo)層的誤差,再用這個(gè)誤差估計(jì)更前一層的誤差,如此一層一層的反傳下去,就獲得了所有其他各層的
2025-01-05 03:16
【摘要】第06講反向傳播網(wǎng)絡(luò)反向傳播網(wǎng)絡(luò)(Back—PropagationNetwork,簡(jiǎn)稱BP網(wǎng)絡(luò))是將W—H學(xué)習(xí)規(guī)則一般化,對(duì)非線性可微分函數(shù)進(jìn)行權(quán)值訓(xùn)練的多層網(wǎng)絡(luò)。BP網(wǎng)絡(luò)是一種多層前向反饋神經(jīng)網(wǎng)絡(luò),其神經(jīng)元的變換函數(shù)是S型函數(shù),因此輸出量為0到1之間的連續(xù)量,它可以實(shí)現(xiàn)從輸入到輸出的任意的非線性映射。由于其
2025-01-05 08:41