【正文】
that studies operators on plete lattices Mathematical Lattice theory for objects or operators in continuous or discrete spaces Topology and stochastic models Translation Invariant Operators ? ?( ) = [ ( )]X Xh hXXhhMorphological Erosion ? ? ?? ? ?( ) = ( ) ( )X X X X1 2 1 2? ?“ LINEARITY” ? ?? ?( ) = [ ( )]X Xh hTRANSLATION INVARIANCE }|{)( XBhBXX h ????? ?Morphological Erosion BhXBX?}|{)( XBhBXX h ????? ?Morphological Erosion Pablo Picasso, Pass with the Cape, 1960 Structuring Element Morphological Dilation ? ? ?? ? ?( ) = ( ) ( )X X X X1 2 1 2? ?“ LINEARITY” ? ?? ?( ) = [ ( )]X Xh hTRANSLATION INVARIANCE }|{)(δ ?????? XBhBXX h ??Morphological Dilation }|{)(δ ?????? XBhBXX h ??X B?XhB?Morphological Dilation Pablo Picasso, Pass with the Cape, 1960 Structuring Element Morphological Dilation Morphological Opening }|{)(XBBBBXBXhh ???????BhBX?XBBXBX ??? )(?Morphological Opening Pablo Picasso, Pass with the Cape, 1960 Structuring Element Morphological Opening – Is a smoothing filter ! – Amount and type of smoothing is determined by the shape and size of the structuring element. – Approximates a shape from below, since XBX ??Morphological Opening amp。 Closing Greyscale Opening Structuring Element Grayscale Morphology ORIGINAL EROSION DILATION OPENING Remark )())(( hFxBFxBh ????Flat Erosion ???????oth e rw i se,fo r,0)(BxxBFlat Dilation )())(( hFxBFxBh ????An Application Target Detection DATA MARKER OPENING MORPHOLOGICAL RECONSTRUCTION Targets An Application: Target Detection MORPHOLOGICAL RECONSTRUCTION MARKER CLOSING DATA An Application: Target Detection THRESHOLDING DATA FINAL RESULT Correctly detected targets Incorrectly detected target