【正文】
troller is designed as a hybrid structure of both hierarchical controller and decentralized controllers as shown in Fig. 3. The controller consists of three different layers. The Scheduler, the Decentralized Control layer, and the Virtual Device layer. In the figure, the passing of information and message are indicated by arrows. The Scheduler is a core ponent that receives the states of all the machines in the VFMC from the Decentralized Control layer, and decides the appropriate next task. It then dispatches the next task to be executed to the Decentralized Control layer. It uses the process knowledge bases that contain the routine cell task rules that are generated from the TID. The Decentralized Control layer consists of virtual drivers for the virtual machine that mimic to physical machines. Their main role is to perform the harmonization and the cooperation between the cell ponents in order to carry out the task called for by the Scheduler layer. They provide a device independent interface to the actual cell ponents by translating the generic mands and error messages of the corresponding machine. The virtual driver in the layer municator and pass messages with each other. A virtual driver send mands to the corresponding physical machine, and receives the state of that machine, through that Virtual Device in the Virtual Device layer. The lowermost layer of the controller consists of the Virtual Devices which monitor and continuously mirror, in real time, the state of the physical machine they represent. Each machine state is analyzed by its Virtual Device and reported to the corresponding Virtual holons as required. The Virtual Devices also serve as conduits for mands from the Virtual holons to the physical machines. 7 5. Conclusion In this study, the concept of virtual manufacturing is investigated, and three models, such as the product, the facility, and the process model, are developed for virtual flexible manufacturing cells. A product model is a generic model used for representing all types of parts, which appear in the process of manufacturing. A facility model contains information about machines consisted of a virtual flexible manufacturing cell. A process model is used for representing all the physical processes that are required for representing product behavior and manufacturing processes. The methodology behind developing VFMC is an objectoriented paradigm that provides a powerful representation and classification tools. For the implementation IGRIP/QUEST is used to model all 3D virtual machines involved models, and to simulate the whole factories where manufacturing events are concerned. The concrete behaviors of simulation are described by the taskoriented description (TID). Also the result of simulation is demonstrated to prove the applicability of the virtual manufacturing paradigm. The potential of virtual manufacturing is to support manufacturability assessments and provide accurate cost, leadtime, and quality estimate is a major motivation for further research and development in this area. References 1. Iwata, Kazuaki Virtual Manufacturing System as Advanced Information Infrastructure for Integrating Manufacturing Resources and Activities, Annals of CIRP, Vol. 46, No. 1, pp. 399, 1997. 2. Kimura Fumihito Product and Process Modeling as a Kernel for Virtual Manufacturing Environment, Annals of CIRP, Vol. 42, No. 1, pp. 147151, 1993. 3. Bodner, D., Park, J., Reveliotis, A., and McGinnis, F., Integration of structural and perfromanceoriented control in flexible automated manufacturing , Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, USA, , 1999. 4. Onosato, M., and Iwata, K., Development of a Virtual manufacturing System by Integrating Product Models and Factory Models, Annals of the CIRP, Vol. 42, , pp. 475478, 1993. 8 9 摘要 虛擬 制造系統(tǒng)的重要性是在新的制造業(yè)發(fā)展過程中逐漸凸顯出來的,進行自動化操作、 設計工廠設備的布局以及工作場所的人機工程學。系統(tǒng)中的三個使用對象分別被定義為產(chǎn)品型號、設施模型和過程模型。因此,現(xiàn)代制造業(yè)需要適應力,并且有重新配置或者自我配置他們自身結構的能力。在現(xiàn)實世界里,它們通過生成制造系統(tǒng)模型的有效模式和模擬制造過程而聞名,并不是它們的實際制造。包括優(yōu)化設備布局,來生產(chǎn)產(chǎn)品。虛擬工廠越來越多的走進制造業(yè)工廠作為實際零件的描述。在本文中,三種模式,即產(chǎn)品,設備和流程模型將得到解決。它的概念是指定為現(xiàn)在或未來的制造系統(tǒng)的所有產(chǎn)品,流程模型,并控制數(shù)據(jù)。虛擬樣機是在虛擬的產(chǎn)品生命周期的重要組成部分,而為迎合虛擬工廠制造產(chǎn)品所需的操作。 在虛擬工廠的軟件實體有一個真實的系統(tǒng)組成部分的高對應,從而貸款有效性進行旨在幫助在實際系統(tǒng)決策者的虛擬系統(tǒng)進行模擬。因此,隨著設計可以找出潛在的問題,其優(yōu)點顯而易見。柔性制造控制中心提供優(yōu)化的制造工藝和提高生產(chǎn)系統(tǒng)的信息。所有的制造過程中的虛擬工廠經(jīng)營活動,除了虛擬制造的內(nèi)在因素,如設計、工藝規(guī)劃和調(diào)度。 3. 虛擬柔性制造單元的對象建模 面向對象技術可以提供一個虛擬柔性制造單元強大的代表性和分類工具。如圖所示,二、三種模式,即產(chǎn)品型號,設備模型,過程模型,用于開發(fā)虛擬柔性制造單元。一個流程模型用于代表所有的物理過程和制造過程所必需的代表產(chǎn)品的行為。它還提供一致的和最新的產(chǎn)品生命周期,用戶需求,設計信息,工藝方案和材料清單。數(shù)控類 NcCode 處理方案,與CAD / CAM 系統(tǒng)進行交互。 實物模型 真正的制造單元可包括數(shù)控機床,機器人,輸送機,和感應器。虛擬機器人有助于卸載和 /從機的負荷零件組成部分,是用來尋找最佳路徑?jīng)]有任何碰撞。例如機器和工件的物理實體,作為它們的形狀,位置的 3 D模型明確表示,和方向。工貿(mào)署背后的發(fā)展方面,由原始細胞或正在其執(zhí)行的任務組成機器的方法,并采用了多層次的辦法。任務起始圖是由兩個基本部分組成:一組休息狀態(tài) SR和一組任務噸的任務,又 12 分為 3組:細胞結構依賴任務( Td)的,獨立的單元配置任務(鈦),而且這個周期過境任務( TT)的。該任務在機器人移動到移動到:計算機名配置獨立的,因為它是由機器人,若未與其他組件進行交互。這些復合狀態(tài)描繪在任務啟動圖由橢圓,如 R11 的 / 3或的 M13 / 4。一定條件下可使用的指導功能,除了一組狀態(tài)參數(shù)。 該行動啟動圖( OID)是該任務啟動圖( TID)第二層圖。甲式的操作是需要一個外部觸發(fā)來啟動它。這個國家的象征有模式馬幣 為機器人為例,國家 RvMnm。小字母 T 顯示了與轉型相關的機器人狀態(tài)。 4 虛擬柔性工裝的架構 細胞的運作涉及到的是具有獨立單機他人,和任務,要求兩個或更多的機器合作的任務。該調(diào)度,分散控制層和虛擬設備層。它使用過程的知識基礎細胞含有的例行任務,是從工貿(mào)署生成的規(guī)則。相互溝通中的虛擬層驅動程序和傳遞信息。虛擬設備也可 作為從虛擬控制器命令到物理機管道。一個過程模型是用來代表所有的產(chǎn)品都為代表的行為和生產(chǎn)流程所需的物理過程。此外,還有模擬結果表明,證明了虛擬制造模式的適用性。 399, 1997。 3. 博德納,四, 公園, j 的, Reveliotis, ,樓,第一體化結構和效績 ,面向柔性自動化控制美國制造業(yè),電力系統(tǒng) 1999 年電機及電子學工程師聯(lián)合會 / ASME國際會議高級智能機電一體化, .345250, 1999年。