【正文】
troller is designed as a hybrid structure of both hierarchical controller and decentralized controllers as shown in Fig. 3. The controller consists of three different layers. The Scheduler, the Decentralized Control layer, and the Virtual Device layer. In the figure, the passing of information and message are indicated by arrows. The Scheduler is a core ponent that receives the states of all the machines in the VFMC from the Decentralized Control layer, and decides the appropriate next task. It then dispatches the next task to be executed to the Decentralized Control layer. It uses the process knowledge bases that contain the routine cell task rules that are generated from the TID. The Decentralized Control layer consists of virtual drivers for the virtual machine that mimic to physical machines. Their main role is to perform the harmonization and the cooperation between the cell ponents in order to carry out the task called for by the Scheduler layer. They provide a device independent interface to the actual cell ponents by translating the generic mands and error messages of the corresponding machine. The virtual driver in the layer municator and pass messages with each other. A virtual driver send mands to the corresponding physical machine, and receives the state of that machine, through that Virtual Device in the Virtual Device layer. The lowermost layer of the controller consists of the Virtual Devices which monitor and continuously mirror, in real time, the state of the physical machine they represent. Each machine state is analyzed by its Virtual Device and reported to the corresponding Virtual holons as required. The Virtual Devices also serve as conduits for mands from the Virtual holons to the physical machines. 7 5. Conclusion In this study, the concept of virtual manufacturing is investigated, and three models, such as the product, the facility, and the process model, are developed for virtual flexible manufacturing cells. A product model is a generic model used for representing all types of parts, which appear in the process of manufacturing. A facility model contains information about machines consisted of a virtual flexible manufacturing cell. A process model is used for representing all the physical processes that are required for representing product behavior and manufacturing processes. The methodology behind developing VFMC is an objectoriented paradigm that provides a powerful representation and classification tools. For the implementation IGRIP/QUEST is used to model all 3D virtual machines involved models, and to simulate the whole factories where manufacturing events are concerned. The concrete behaviors of simulation are described by the taskoriented description (TID). Also the result of simulation is demonstrated to prove the applicability of the virtual manufacturing paradigm. The potential of virtual manufacturing is to support manufacturability assessments and provide accurate cost, leadtime, and quality estimate is a major motivation for further research and development in this area. References 1. Iwata, Kazuaki Virtual Manufacturing System as Advanced Information Infrastructure for Integrating Manufacturing Resources and Activities, Annals of CIRP, Vol. 46, No. 1, pp. 399, 1997. 2. Kimura Fumihito Product and Process Modeling as a Kernel for Virtual Manufacturing Environment, Annals of CIRP, Vol. 42, No. 1, pp. 147151, 1993. 3. Bodner, D., Park, J., Reveliotis, A., and McGinnis, F., Integration of structural and perfromanceoriented control in flexible automated manufacturing , Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, USA, , 1999. 4. Onosato, M., and Iwata, K., Development of a Virtual manufacturing System by Integrating Product Models and Factory Models, Annals of the CIRP, Vol. 42, , pp. 475478, 1993. 8 9 摘要 虛擬 制造系統(tǒng)的重要性是在新的制造業(yè)發(fā)展過(guò)程中逐漸凸顯出來(lái)的,進(jìn)行自動(dòng)化操作、 設(shè)計(jì)工廠設(shè)備的布局以及工作場(chǎng)所的人機(jī)工程學(xué)。系統(tǒng)中的三個(gè)使用對(duì)象分別被定義為產(chǎn)品型號(hào)、設(shè)施模型和過(guò)程模型。因此,現(xiàn)代制造業(yè)需要適應(yīng)力,并且有重新配置或者自我配置他們自身結(jié)構(gòu)的能力。在現(xiàn)實(shí)世界里,它們通過(guò)生成制造系統(tǒng)模型的有效模式和模擬制造過(guò)程而聞名,并不是它們的實(shí)際制造。包括優(yōu)化設(shè)備布局,來(lái)生產(chǎn)產(chǎn)品。虛擬工廠越來(lái)越多的走進(jìn)制造業(yè)工廠作為實(shí)際零件的描述。在本文中,三種模式,即產(chǎn)品,設(shè)備和流程模型將得到解決。它的概念是指定為現(xiàn)在或未來(lái)的制造系統(tǒng)的所有產(chǎn)品,流程模型,并控制數(shù)據(jù)。虛擬樣機(jī)是在虛擬的產(chǎn)品生命周期的重要組成部分,而為迎合虛擬工廠制造產(chǎn)品所需的操作。 在虛擬工廠的軟件實(shí)體有一個(gè)真實(shí)的系統(tǒng)組成部分的高對(duì)應(yīng),從而貸款有效性進(jìn)行旨在幫助在實(shí)際系統(tǒng)決策者的虛擬系統(tǒng)進(jìn)行模擬。因此,隨著設(shè)計(jì)可以找出潛在的問(wèn)題,其優(yōu)點(diǎn)顯而易見(jiàn)。柔性制造控制中心提供優(yōu)化的制造工藝和提高生產(chǎn)系統(tǒng)的信息。所有的制造過(guò)程中的虛擬工廠經(jīng)營(yíng)活動(dòng),除了虛擬制造的內(nèi)在因素,如設(shè)計(jì)、工藝規(guī)劃和調(diào)度。 3. 虛擬柔性制造單元的對(duì)象建模 面向?qū)ο蠹夹g(shù)可以提供一個(gè)虛擬柔性制造單元強(qiáng)大的代表性和分類工具。如圖所示,二、三種模式,即產(chǎn)品型號(hào),設(shè)備模型,過(guò)程模型,用于開(kāi)發(fā)虛擬柔性制造單元。一個(gè)流程模型用于代表所有的物理過(guò)程和制造過(guò)程所必需的代表產(chǎn)品的行為。它還提供一致的和最新的產(chǎn)品生命周期,用戶需求,設(shè)計(jì)信息,工藝方案和材料清單。數(shù)控類 NcCode 處理方案,與CAD / CAM 系統(tǒng)進(jìn)行交互。 實(shí)物模型 真正的制造單元可包括數(shù)控機(jī)床,機(jī)器人,輸送機(jī),和感應(yīng)器。虛擬機(jī)器人有助于卸載和 /從機(jī)的負(fù)荷零件組成部分,是用來(lái)尋找最佳路徑?jīng)]有任何碰撞。例如機(jī)器和工件的物理實(shí)體,作為它們的形狀,位置的 3 D模型明確表示,和方向。工貿(mào)署背后的發(fā)展方面,由原始細(xì)胞或正在其執(zhí)行的任務(wù)組成機(jī)器的方法,并采用了多層次的辦法。任務(wù)起始圖是由兩個(gè)基本部分組成:一組休息狀態(tài) SR和一組任務(wù)噸的任務(wù),又 12 分為 3組:細(xì)胞結(jié)構(gòu)依賴任務(wù)( Td)的,獨(dú)立的單元配置任務(wù)(鈦),而且這個(gè)周期過(guò)境任務(wù)( TT)的。該任務(wù)在機(jī)器人移動(dòng)到移動(dòng)到:計(jì)算機(jī)名配置獨(dú)立的,因?yàn)樗怯蓹C(jī)器人,若未與其他組件進(jìn)行交互。這些復(fù)合狀態(tài)描繪在任務(wù)啟動(dòng)圖由橢圓,如 R11 的 / 3或的 M13 / 4。一定條件下可使用的指導(dǎo)功能,除了一組狀態(tài)參數(shù)。 該行動(dòng)啟動(dòng)圖( OID)是該任務(wù)啟動(dòng)圖( TID)第二層圖。甲式的操作是需要一個(gè)外部觸發(fā)來(lái)啟動(dòng)它。這個(gè)國(guó)家的象征有模式馬幣 為機(jī)器人為例,國(guó)家 RvMnm。小字母 T 顯示了與轉(zhuǎn)型相關(guān)的機(jī)器人狀態(tài)。 4 虛擬柔性工裝的架構(gòu) 細(xì)胞的運(yùn)作涉及到的是具有獨(dú)立單機(jī)他人,和任務(wù),要求兩個(gè)或更多的機(jī)器合作的任務(wù)。該調(diào)度,分散控制層和虛擬設(shè)備層。它使用過(guò)程的知識(shí)基礎(chǔ)細(xì)胞含有的例行任務(wù),是從工貿(mào)署生成的規(guī)則。相互溝通中的虛擬層驅(qū)動(dòng)程序和傳遞信息。虛擬設(shè)備也可 作為從虛擬控制器命令到物理機(jī)管道。一個(gè)過(guò)程模型是用來(lái)代表所有的產(chǎn)品都為代表的行為和生產(chǎn)流程所需的物理過(guò)程。此外,還有模擬結(jié)果表明,證明了虛擬制造模式的適用性。 399, 1997。 3. 博德納,四, 公園, j 的, Reveliotis, ,樓,第一體化結(jié)構(gòu)和效績(jī) ,面向柔性自動(dòng)化控制美國(guó)制造業(yè),電力系統(tǒng) 1999 年電機(jī)及電子學(xué)工程師聯(lián)合會(huì) / ASME國(guó)際會(huì)議高級(jí)智能機(jī)電一體化, .345250, 1999年。