【摘要】考點3與勾股定理有關的證明題,已知在△ABC中,∠C=90°,D為AC上一點,AB2-BD2與AC2-DC2有怎樣的關系?試證明你的結論。證明:在Rt△ABC中,AB2=AC2+BC2在Rt△DBC中,BD2=DC2+BC2∴BC2=AB2—AC2BC2=BD2—D
2025-07-26 12:21
【摘要】一勾股定理驗證(等面積法)解題思路:將所給三角形拼成大圖形用等面積法:大圖形面積=各小圖形面積和。例1、如圖所示,可以利用兩個全等的直角三角形拼出一個梯形.借助這個圖形,你能用面積法來驗證勾股定理嗎?例2、如圖矩形是由四個直角三角形拼成,題中已給出各邊長,試證明勾股定理。例3、圖中的正方形均是由Rt△ABC拼成,試驗證勾股定理。2、
2025-06-22 03:47
【摘要】“勾股定理”的幾種常見證明方法姓名:彭磊單位:寧強縣巴山中學教材:華東師大版數(shù)學八年級上冊第十四章“勾股定理”第一小節(jié):“直角三角形三邊關系”知識點1在中國古代,人們把彎曲成直角的手臂的上半部分稱為"勾",下半部分稱為"股"。我國古代學者把直角三
2025-10-08 21:34
【摘要】第一篇:數(shù)學論文——勾股定理的證明方法探究 勾股定理的證明方法探究 勾股定理是初等幾何中的一個基本定理。所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方等于斜邊的平方。數(shù)學公式中常寫作:a2+...
2025-11-07 22:31
【摘要】第一篇:勾股定理的多種證明方法 勾股定理的多種證明方法 這個定理有許多證明的方法,其證明的方法可能是數(shù)學眾多定理中最多的。路明思(ElishaScottLoomis)的PythagoreanPro...
2025-10-26 18:23
【摘要】第一篇:勾股定理的證明方法研究性學習 “勾股定理的證明方法研究性學習”學習小組評 價量規(guī) 模塊6作業(yè)模板 作者姓名主題單元名稱 尹勇勾股定理 學科 數(shù)學 年級 八年級 單元評價方案...
2025-10-05 21:50
【摘要】第一篇:第六講勾股定理及其證明 八年級數(shù)學(下)講義 第六講勾股定理及其證明 勾股定理:如果直角三角形的兩直角邊長分別為a和b,斜邊長為c,那么 a2+b2=c 2如圖,若a、b為直邊,c為...
2025-10-27 01:47
【摘要】第一篇:歐幾里得證明勾股定理簡化版 歐幾里得的證法 設△ABC為一直角三角形,其中A為直角。從A點劃一直線至對邊,使其垂直于對邊。延長此線把對邊上的正方形一分為二,其面積分別與其余兩個正方形相等。...
2025-11-07 22:45
【摘要】勾股定理的9種證明(有圖)【證法1】(鄒元治證明)以a、b為直角邊,以c為斜邊做四個全等的直角三角形,則每個直角三角形的面積等于.把這四個直角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上,B、F、C三點在一條直線上,C、G、D三點在一條直線上.∵RtΔHAE≌RtΔEBF,∴∠AHE=∠BEF.∵∠AEH+∠AHE=90o,∴
2025-06-28 00:07
【摘要】第一篇:初二上勾股定理證明方法 勾股定理有十分悠久的歷史,兩千多年來,人們對勾股定理的證明頗感興趣,因為這個定理太貼近人們的生活實際,以至于古往今來,下至平民百姓,上至帝王總統(tǒng)都愿意探討和研究它的證...
2025-11-07 04:40
【摘要】第一篇:用余弦定理證明勾股定理并非循環(huán)論證 用余弦定理證明勾股定理并非循環(huán)論證 大家都知道,勾股定理不過是余弦定理的一種特例,所以用余弦定理證明勾股定理就很容易;但是長期以來,有一種觀點認為,余弦...
2025-10-28 12:01
【摘要】第一篇:勾股定理的逆定理說課稿 《勾股定理的逆定理》說課稿 中壩鎮(zhèn)中學王永成尊敬的各位評委,各位老師,大家好: 我今天說課的內容是《勾股定理的逆定理》第一課時。下面我將從教材、教學目標、教學重點...
2025-10-26 18:06
【摘要】勾股定理的逆定理勾股定理的逆定理(學習目標)1.掌握勾股定理的逆定理及其應用.理解原命題與其逆命題,原定理與其逆定理的概念及它們之間的關系.2.能利用勾股定理的逆定理,由三邊之長判斷一個三角形是否是直角三角形.3.能夠理解勾股定理及逆定理的區(qū)別與聯(lián)系,掌握它們的應用范圍.(要點梳理)(高清課堂勾股定理逆定理知識要點)要點一、勾股定理的逆定理如果三角形
2025-06-22 04:06
【摘要】勾股定理的逆定理人教版數(shù)學八年級下冊.重點、互逆定理難點3.能靈活運用勾股定理的逆定理解決實際問題.重點學習目標(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【摘要】勾股定理和勾股定理逆定理經(jīng)典例題題型一:直接考查勾股定理例1在△ABC中,∠C=90°(1)已知AC=6,BC=8,求AB的長;A(2)已知AB=17,AC=15,求BC的長.BC題型二:利用勾股定理測量長度1、如果梯子的底端離建筑物9m,那么15m長的梯子可以到達建筑物的高度是多少米?DABC2、如圖
2025-03-24 13:00